Rust 异步 Runtime 的兼容层 - 施继成
Rust 异步 Runtime 的兼容层 施继成 @ DatenLord Introduce what’s rust async runtime # Rust async runtime Analyze the reason of runtime isolation # Async runtime binding # Compatible layer 1 Create a wheel0 码力 | 22 页 | 957.41 KB | 1 年前3使用硬件加速Tokio - 戴翔
第三届中国 Rust 开发者大会 使用硬件加速 Tokio 演讲人: Loong.Dai, Cathy.Lu Loong Dai • Intel 云原生工程师 • 微软 MVP • Dapr 、 Thanos 、 Golangci-lint 的 Maintainer • 现在主要专注于服务网格领域,探索云原生软硬件结 合新范式 • Github ID: daixiang0 自我介绍0 码力 | 17 页 | 1.66 MB | 1 年前3FPGA助力Python加速计算 陈志勇
Python 加速计算 陈志勇 高级技术市场经理 安富利电子科技 2019年10月19日,北京 2 ➢ Python 语言:易学易读易用、可扩展性、可移植性等。 ➢ Python 开发工具:库丰富、效率高、调试方便 ➢ Python 的应用: 人工智能、数据分析等 ➢ Python 的生态环境:软件平台、硬件平台、方案合作伙伴等 ➢ 用 Python 如何开发嵌入式产品?如何实现 算法硬件加速? ➢ ➢ 之前基于python开发的工程师很少接触嵌入式环境, 接触硬件 ➢ 本次题目的主要内容 ➢ Python <- tools -> FPGA ➢ 算法硬件加速:用FPGA的逻辑硬件实现算法加速 ➢ 算法如何在FPGA 中实现?如何用”与或非”门电路去写 算法? ➢ 目前哪些 Xilinx FPGA的开发工具支持python 语言? ➢ 目前Xilinx 工具支持python 的主要应用领域 件设备、 嵌入 式操作系统以及用户的应用程序等四个部分组成。 ➢ 嵌入式系统促使计算机的形态和性能更加小型化,多功能,低功耗. ➢ 加速计算: ➢ 如何提高计算效率,提高计算性能 ➢ 加速计算框架的考虑 ➢ 加速计算平台的考虑 ➢ FPGA 是如何作为加速平台的?在边缘和云端 Python 与嵌入式计算 4 ➢ FPGA(Field Programmable Gate Array)是在0 码力 | 34 页 | 4.19 MB | 1 年前307 FPGA 助力Python加速计算 陈志勇
FPGA 助力 Python 加速计算 陈志勇 高级技术市场经理 安富利电子科技 2019年10月20日,深圳 2 Ø Python 语言:易学易读易用、可扩展性、可移植性等。 Ø Python 开发工具:库丰富、效率高、调试方便 Ø Python 的应用: 人工智能、数据分析等 Ø Python 的生态环境:软件平台、硬件平台、方案合作伙伴 等 Ø 用 Python 如何开发嵌入式产品?如何实现 如何开发嵌入式产品?如何实现 算法硬件加速? Ø 之前基于python开发的工程师很少接触嵌入式环境, 接触硬件 Ø 本次题目的主要内容 Ø Python <- tools -> FPGA Ø 算法硬件加速:用FPGA的逻辑硬件实现算法加速 Ø 算法如何在FPGA 中实现?如何用”与或非”门电路去 写算法? Ø 目前哪些 Xilinx FPGA的开发工具支持python 语言? Ø 目前Xilinx 工具支持python 件设备、 嵌入 式操作系统以及用户的应用程序等四个部分组成。 Ø 嵌入式系统促使计算机的形态和性能更加小型化,多功能,低功耗. Ø 加速计算: Ø 如何提高计算效率,提高计算性能 Ø 加速计算框架的考虑 Ø 加速计算平台的考虑 Ø FPGA 是如何作为加速平台的?在边缘和云端 Python 与嵌入式计算 4 Ø FPGA(Field Programmable Gate Array)是在0 码力 | 34 页 | 6.89 MB | 1 年前3Golang在接入层长连接服务中的实践-黄欣
Golang 在接入层长连接服务中的实践 黄欣 基础平台-架构部 目录 • 背景 • 架构 • 心得 目录 • 架构 • 心得 背景—why 长连接? • 业务场景 – 大量实时计算 • 司机乘客撮合 • 实时计价 – 高频度的数据交互 • 坐标数据 • 计价数据 – App和服务端双向可达 • 上行(抢单) • 下行(派单) 背景—why golang? • 开发效率 整体架构图 架构—接口设计 • 原则 – 扩展性 – 稳定性(最好不用升级) • 解决方法 – Protobuf(golang) – 接口设计分层 • 框架层:模块间通信协议(类似tcp/udp) • 业务层:bytes(类似应用层)留给业务自己定义就好了 架构—性能 • conn svr 架构—集群扩展 • Proxy本身无限扩容(无状态) • 依赖的存储可无限扩容(状态交给存储)0 码力 | 31 页 | 1.67 MB | 1 年前32_FPGA助力Python加速计算_陈志勇
Python 加速计算 陈志勇 高级技术市场经理 安富利电子科技 2019年9月21日, 上海 2 Ø Python 语言:易学易读易用、可扩展性、可移植性等。 Ø Python 开发工具:库丰富、效率高、调试方便 Ø Python 的应用: 人工智能、数据分析等 Ø Python 的生态环境:软件平台、硬件平台、方案合作伙伴等 Ø 用 Python 如何开发嵌入式产品?如何实现 算法硬件加速? Ø Ø 之前基于python开发的工程师很少接触嵌入式环境, 接触硬件 Ø 本次题目的主要内容 Ø Python <- tools -> FPGA Ø 算法硬件加速:用FPGA的逻辑硬件实现算法加速 Ø 算法如何在FPGA 中实现?如何用”与或非”门电路去写 算法? Ø 目前哪些 Xilinx FPGA的开发工具支持python 语言? Ø 目前Xilinx 工具支持python 的主要应用领域 件设备、 嵌入 式操作系统以及用户的应用程序等四个部分组成。 Ø 嵌入式系统促使计算机的形态和性能更加小型化,多功能,低功耗. Ø 加速计算: Ø 如何提高计算效率,提高计算性能 Ø 加速计算框架的考虑 Ø 加速计算平台的考虑 Ø FPGA 是如何作为加速平台的?在边缘和云端 Python 与嵌入式计算 4 Ø FPGA(Field Programmable Gate Array)是在0 码力 | 33 页 | 8.99 MB | 1 年前3FFmpeg在Intel GPU上的硬件加速与优化
FFmpeg在Intel GPU上的 硬件加速与优化 赵军 DCG/NPG @ Intel 介绍FFmpeg VAAPI • Media pipeline review • 何谓FFmpeg VAAPI • 为什么我们需要FFmpeg VAAPI • 当前状态 • 更进一步的计划 • 附录 典型的 media pipeline File Device Network Stream acceleration) • MPEG-2, MPEG-4 on VIA Unichrome • Xv/XvMC 的限制 • 不支持解码所有阶段的硬件加速 • 依赖于X-protocol协议(转码时候,你需要Xwindow吗?) • 不支持硬件编码加速 • … Linux Video API 续 一 • 何谓VA-API(Video Acceleration API ) • An API specification MIT license • It opens and registers a backend • https://github.com/01org/libva • 依赖于后端驱动,可以提供Video硬件加速 • 解码 • 编码 • 图像后处理 可用的后端驱动 • Intel VA(i965) driver for Intel chip-sets • Intel hybrid driver • Intel0 码力 | 26 页 | 964.83 KB | 1 年前33 使用Python加速文件传输和文件复制 Giampaolo Rodola
● Linux + NFS ● server-side copy ● https://bugs.python.org/issue37159 Speedup shutil.copytree() 加速 shutil.copytree() >>> import shutil >>> shutil.copytree('somedir', 'somedir-2') Copy directory tree0 码力 | 78 页 | 654.51 KB | 1 年前3PyConChina2022-上海-Python启动加速探索及实践-严懿宸
Python 启动加速 探索及实践 主讲人: 严懿宸 – 阿里云 严懿宸 曾于 Oracle Labs 参与 GraalVM 开发 毕业后加入阿里云 – 编译器 目前负责 Python / Node.js 的 Runtime 优化 Content • Python 启动速度简析 • PyCDS 设计与实现 • 更多讨论 Python startup time Python startup0 码力 | 21 页 | 3.18 MB | 1 年前3美团点评2018技术年货
箭头所示)。从功能角度,大体上分为四层:数据层、 服务层、接入层和监控层。 APPKIT打造稳定、灵活、高效的运营配置平台 - 美团技术团队 4.1 数据层 4.1 数据层 数据层作为最底层的数据存储,其保存了最基本的运营后台数据、流程数据和线上数据。对持久化的数 据,我们采用MySQL进行存储;对于缓存数据,我们采用了Redis的解决方案。这样数据层形成基本的两 级存储结构:MySQ 操作都记录在这 里;流程数据,运营人员操作完成后,提供发布流程,预览及审核都在流程数据里进行;线上数据,审核 通过后,数据同步到线上数据,最终C端用户获取到的数据都是来源于线上数据。 谈到数据层,这里我们遇到了存储上的一个小问题。按城市运营的每条数据,都需要存储具体的城市ID列 表,其在数据库里的存储为 “1,2,3,4…… ”这样字符串。而这种数据存储在业务请求和条件过滤过程中, 存在着如下两个问题: 们既解决了大数据存储对 内存的消耗问题,又解决了城市过滤的性能问题。 4.2 服务层 4.2 服务层 服务层向下对底层数据进行操作;向上为接入层获取数据提供接入能力。其提供四个服务能力:运营后 台、开放平台、数据服务、APPKIT-SDK,如下表所列: 服务层 4.3 接入层 4.3 接入层 接入层主要为运营人员、业务研发提供接入能力。通过运营流程化为事前、事中、事后提供保障。一个运0 码力 | 229 页 | 61.61 MB | 1 年前3
共 322 条
- 1
- 2
- 3
- 4
- 5
- 6
- 33