积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(562)Python(183)Go(70)PyWebIO(67)区块链(48)Java(35)Rust(34)微服务(33)C++(29)架构设计(29)

语言

全部中文(简体)(482)英语(69)中文(简体)(1)

格式

全部PDF文档 PDF(425)其他文档 其他(108)PPT文档 PPT(28)DOC文档 DOC(1)
 
本次搜索耗时 0.026 秒,为您找到相关结果约 562 个.
  • 全部
  • 后端开发
  • Python
  • Go
  • PyWebIO
  • 区块链
  • Java
  • Rust
  • 微服务
  • C++
  • 架构设计
  • 全部
  • 中文(简体)
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • PPT文档 PPT
  • DOC文档 DOC
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Go性能优化概览-曹春晖

    业务性能优化概览 By Xargin 《Go 语⾔⾼级编程》合著者 Go contributor ⽬ 录 优化的前置知识 01 ⽣产环境的优化 02 Continuous profiling 03 优化的前置知识 第⼀部分 Latency numbers every programmer should know https://colin-scott.github.io/p io/personal_website/research/interactive_latency.html 优化的前置知识 • 要能读得懂基本的调⽤栈 • 了解 Go 语⾔内部原理(runtime,常⽤标准库) • 了解常⻅的⽹络协议(http、pb) https://github.com/bagder/http2-explained https://github.com/bagder/http3-explained ⽤户声明的对象,被放在栈上还是堆上, 是由编译器的 escape analysis 来决定的 ⽅法论 内存使⽤优化 CPU 使⽤优化 阻塞优化 GC 优化 标准库优化 runtime 优化 应⽤层优化 底层优化 • 越靠近应⽤层,优化带来的效果越好 • 涉及到底层优化的,⼤多数情况下还是修改应⽤代码 逻辑优化 ⽣产环境的优化 第⼆部分 ⾸先,是发现问题 API 压测 全链路压测 ⽣产环境被 ⾼峰流量打爆了
    0 码力 | 40 页 | 8.69 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 07 深入浅出访存优化

    深入浅出访存优化 by 彭于斌( @archibate ) 往期录播: https://www.bilibili.com/video/BV1fa411r7zp 课程 PPT 和代码: https://github.com/parallel101/course 为什么往 int 数组里赋值 1 比赋值 0 慢一倍? 第 1 章:内存带宽 cpu-bound 与 memory-bound • 而 sine 这种内部需要泰勒展开来计算,每次迭代计算量很大的 循环体,并行才有较好的加速效果。称为计算瓶颈( cpu- bound )。 • 并行能减轻计算瓶颈,但不减轻内存瓶颈,故后者是优化的重点 。 浮点加法的计算量 • 冷知识:并行地给浮点数组每个元素做一次加法反而更慢。 • 因为一次浮点加法的计算量和访存的超高延迟相比实在太少了。 • 计算太简单,数据量又大,并行只带来了多线程调度的额外开销 。而指令缓存的大小刚好和数据缓存一样也是 192 KB 。 • 二级缓存有 256 KB , 6 个物理核心每个都有一个, 总共 1.5 MB 。 • 三级缓存由各个物理核心共享,总共 12 MB 。 通过图形界面查看拓扑结构: lstopo 根据我们缓存的大小分析刚刚的图表 • 也可以看到刚刚两个出现转折的点,也是在 二级缓存和三级缓存的大小附近。 • 因此,数据小到装的进二级缓存,则最大带 宽就取决于二级缓存的带宽。稍微大一点则
    0 码力 | 147 页 | 18.88 MB | 1 年前
    3
  • pdf文档 4 Python机器学习性能优化

    Python机器学习性能优化 以BERT服务为例例,从1到1000 刘欣 ⽬目录 CONTENTS 1. 优化的哲学 2. 了解你的资源 3. 定位性能瓶颈 4. 动⼿优化 1. 优化的哲学 "There ain't no such thing as a free lunch" Ahmdal’s Law • 系统整体的优化,取决于热点部分的占⽐比和该部分的加速程度 No Free Free Lunch • 定位热点 & 热点加速 • 对于项⽬目开发周期:
 1. 先做出效果
 2. 确定整体pipeline
 3. 再考虑优化 • 对于⼈人⼯工智能项⽬目:迭代周期更更⻓长,更更是如此 以BERT服务为例 • BERT:
 TODO: ⼀一句句话解释
 • 横扫多项NLP任务的SOTA榜 • 惊⼈人的3亿参数 以BERT服务为例 • Self Attention机制 's=Happy birthday to [MASK].' 
 
 [“you"] 以BERT服务为例 • 我们现在上线了了这样⼀一个服务,每秒钟只能处理理10个请求 • Q: ⼤大家⼀一开始如何着⼿手优化 • Profile before Optimizing • 建⽴立闭环 2 了解你的资源 cpu/内存/io/gpu GPU为什么“快”? 计算⼒对⽐ • GFLOPS/s
 

    0 码力 | 38 页 | 2.25 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 性能优化之无分支编程 Branchless Programming

    性能优化 之 无分支编程 Branchless Programming by 彭于斌( @archibate ) 两种代码写法:分支 vs 三目运算符 两种使用方式:排序 vs 不排序 测试结果(均为 gcc -O3 ) 测试结果可视化 图表比较:分支 vs 无分支 分支 无分支 0 0.01 0.02 0.03 耗时(越低越好) 乱序 有序 • 传统的分支方法实现的 排序过的数据明显比乱序时高效。 • 无分支的方法对于乱序和有序的数据一样 高效,性能吊打了传统的分支方法。 • 对于传统分支的做法,为什么排序了的更 高效?既然无分支更高效,我要怎样优化 才能让我的程序变成无分支的呢?那就来 看本期性能优化专题课吧! 分支预测成败对性能的影响 排序为什么对有分支的版本影响那么大 为什么需要流水线 • 为了高效, CPU 的内部其实是一个流水 线 (pipeline) 节省时间。 • 例如洗脸需要眼睛嘴巴手,刷牙需要嘴巴手 ,那么洗脸和刷牙不能同时进行。但是烧开 水只需要占用煤气灶,和洗脸刷牙不冲突, 所以可以一边烧开水一边洗脸刷牙。 • 所以让小彭老师来优化的话,可以只需要 5 + 5 + 10 + 20 = 40 分钟,比你快一倍多。 任务 时间 占用资源 洗脸 5 分钟 眼睛,嘴巴,手 烧开水 10 分钟 煤气灶 刷牙 5 分钟 嘴巴,手
    0 码力 | 47 页 | 8.45 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 04 从汇编角度看编译器优化

    从汇编角度看编译器优化 by 彭于斌( @archibate ) 往期录播: https://www.bilibili.com/video/BV1fa411r7zp 课程 PPT 和代码: https://github.com/parallel101/course 高性能并行编程与优化 - 课程大纲 • 分为前半段和后半段,前半段主要介绍现代 C++ ,后半段主要介绍并行编程与优化。 1.课程安排与开发环境搭建: 入门:常用 STL 容器, RAII 内存管理 3.现代 C++ 进阶:模板元编程与函数式编程 4.编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: 硬件要求: 64 位( 32 位时代过去了) 至少 2 核 4 线程(并行课…) 英伟达家显卡( GPU 专题) 软件要求: Visual Studio 2019 ( Windows 用户) GCC 9 及以上( Linux 用户) CMake 3.12 及以上(跨平台作业) Git 2.x (作业上传到 GitHub ) CUDA Toolkit 10.0 以上( GPU 专题) 第 0 章:汇编语言
    0 码力 | 108 页 | 9.47 MB | 1 年前
    3
  • pdf文档 IPC性能极致优化方案-RPAL落地实践

    IPC性能极致优化方案-RPAL落地实践 谢正尧 字节跳动 研发工程师 目 录 方案诞生的背景 01 全进程地址空间共享与保护 02 用户态进程切换 03 高效的Go Event Poller 04 RPC框架Kitex集成 05 性能收益与业务展望 06 方案诞生的背景 第一部分 方案诞生的背景 几种常见的同机通信场景: 1. 微服务合并部署(亲和性部署、sidecar call remote call 方案诞生的背景 微服务合并形态:sidecar 进程通信 方案诞生的背景 微服务合并形态:亲和性部署 方案诞生的背景 怎么放大本地通信的优势? 低延迟 提升用户体验 低开销 降低计算成本 常见的本地通信方案:回环 IP、UDS、共享内存IPC 方案诞生的背景 以性能较优的 IPC 方案 share memory ipc 为例分析性能瓶颈: 注:方案 epoll 网络模型,实现了纯用户态的事件轮询和无拷贝的指针读写接口。 从性能瓶颈的两点分析: 1. 异步线程唤醒: 关键在于如何最低限度降低线程唤醒的开销,非必要不通知事件。 2. 数据序列化/反序列化 需要做到跨进程的虚拟地址空间共享,通过传递指针来传递一切数据。 全进程地址空间共享与保护 第二部分 全进程地址空间共享与保护 模拟插件/动态链接库等方案的用户态上下文切换和虚拟地址访问,需要解决:
    0 码力 | 39 页 | 2.98 MB | 1 年前
    3
  • pdf文档 5.cgo 原理解析及优化实践

    cgo 原理解析及优化实践 朱德江 蚂蚁集团 MOSN 核心成员 Golang contributor Envoy Golang extension maintainer 公众号 • 开源爱好者 • 十余年网关研发 • OpenResty 老司机(NGINX + LuaJIT) • MOSN 核心成员 • Envoy Golang extension maintainer • • 玩过 DSL 编译器 • 对 LuaJIT、Go 有一些研究 目 录 背景介绍 01 cgo 工作机制 02 cgo 调度机制 03 CPU 优化 04 GC 优化 05 背景介绍 第一部分 网关发展历史 网关的扩展机制 什么是 MoE 举个例子 为什么需要 MoE Envoy  研发效能  良好的生态,上手门槛低  Wasm?Lua? Golang P,会携带新建的 newg,在一个新的 Go 线程上执行 Go 调 C ① “释放”P 并没有立即执行,需要等 sysmon 来 retake  属于优化;通常 C 很快返回 ② 获取不到 P,也会将 G 放入全局 G 队列 CPU 优化 第四部分 发现过程  needm:获取 extra M,确保 go 需要的信号没有被屏蔽  dropm:释放 extra M,恢复信号 8
    0 码力 | 45 页 | 5.74 MB | 1 年前
    3
  • pdf文档 Java Chassis通信处理详解 - 通信优化实践

    Java Chassis通信处理详解 通信优化实践 议题  问题不挑战  整体线程模型  Consumer  Producer 问题不挑战 消费者 编程 模型 透明 RPC Spring MVC Transport Highway Vertx REST Servlet REST 生产者 编程 模型 透明 业务线程 Vertx Message Buffer Connection.send -> Socket.write(buf) Consumer Highway client-优化单连接模型 Eventloop TcpClientConnecton 业务线程 …… 业务线程 Vertx Message Buffer CAS Message Queue Socket.write(composite buffer) TPS Latency(ms) CPU Consumer Producer 优化前 81986 1.22 290% 290% 优化后 145369 0.688 270% 270% Connection.send Consumer Highway client-多连接模型 Eventloop
    0 码力 | 17 页 | 2.22 MB | 1 年前
    3
  • pdf文档 2.1.1 Golang主动式内存缓存的优化探索之路

    Golang主动式内存缓存的优化探索之路 安晏伯 学而思网校 技术专家 目 录 问题引入 01 难点攻克 02 主动式内存缓存框架 03 总结 04 问题引入 第一部分 为什么能有极致的性能? 01. 如何优化? 解决了哪些技术难题? 主动式内存缓存 如何优化? 极致的性能 除了网络IO,与Redis有什么区别? 复杂的查询怎么办? 02. 传统的Cache很难 主动式内存缓存框架 第三部分 技术全景图 01. 主动式内存缓存架构的技术全景图 数据中心、数据源 02. 分布式部署,解决海量数据的传输、加载 数据全量加载时,缓解数据库压力 链路优化 优化 协议 编码 空值剔除 数据存储、数据传输 带宽减少40% 2GB -> 1.2GB MaxwellConsumer 03. 通过golang接口的方式,实现业务与框架代码分离 DataManager 主动监听数据的变化,并实时更新内存中的缓存数据 • 具备极高的性能,保障业务的快速响应 • 依赖方不可用时,提供有损服务 心得感悟 极致的性能 01. 请求到响应只需要内存中的操作即可完成,因此具备极高的性能 用户请求 请求 内存检索 逻辑处理 快速响应 响应 1000万业务数据,10个pod,4核心16G内存,QPS均值12W 最小的依赖 02. 最小化依赖故障时,对业务服务造成的影响 核心业务数据都缓存在本机内存中
    0 码力 | 48 页 | 6.06 MB | 1 年前
    3
  • pdf文档 ⽤ egg 孵化你的 SQL 优化器 - 王润基

    第三届中国Rust开发者⼤会 ⽤ egg 孵化你的 SQL 优化器 王润基 RisingWave 内核开发⼯程师 ? Parser Binder Optimizer Executor SQL AST Logical Plan Physical Plan Table Catalog Storage RisingLight 查询引擎的整体结构 SELECT name, url Hash Join #0 = #2 Scan $1.1, $1.2 Scan $2.1, $2.2 Projection #1, #3 ⼀个 SQL 语句优化的例⼦ 基于规则的优化 (RBO) 基于代价的优化 (CBO) 谓词下推 Join Filter A B Join Filter A B Filter Join A Join B C Join C Nested Loop Join 连接重排序 连接算法选择 TopN A Order TopN A Limit 查询优化 定义计划节点 定义重写规则 ⽤纯 Rust 编写的第⼀代优化器 Visitor 模式 ⽤纯 Rust 编写的第⼀代优化器 e-class e-node Rewriting Rewriting (* ?x 2) => (<< ?x 1) Rewriting
    0 码力 | 39 页 | 6.48 MB | 1 年前
    3
共 562 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 57
前往
页
相关搜索词
Go性能优化概览春晖C++高性高性能并行编程课件07Python机器学习04IPC极致方案RPAL落地实践cgo原理解析JavaChassis通信处理详解2.1Golang主动动式主动式内存缓存探索王润基eggRust
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩