积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(413)Weblate(249)KiCad(54)Blender(39)产品与服务(24)人工智能(22)Apache OFBiz(13)Krita(9)版本控制(4)GIMP(4)

语言

全部英语(248)中文(简体)(138)中文(繁体)(10)日语(6)zh(5)中文(简体)(2)[zh](1)fj(1)韩语(1)ro(1)

格式

全部PDF文档 PDF(261)其他文档 其他(152)
 
本次搜索耗时 0.029 秒,为您找到相关结果约 413 个.
  • 全部
  • 综合其他
  • Weblate
  • KiCad
  • Blender
  • 产品与服务
  • 人工智能
  • Apache OFBiz
  • Krita
  • 版本控制
  • GIMP
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • 日语
  • zh
  • 中文(简体)
  • [zh]
  • fj
  • 韩语
  • ro
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Dynamic Model in TVM

    rights reserved. Presenter: Haichen Shen, Yao Wang Amazon SageMaker Neo, Deep Engine Science Dynamic Model in TVM AWS AI© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Models with models© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Support dynamic model in TVM ● Support Any-dim in typing ● Use shape function to compute the type at runtime ● Virtual input_name = "data" input_shape = [tvm.relay.Any(), 3, 224, 224] dtype = "float32" block = get_model('resnet50_v1', pretrained=True) mod, params = relay.frontend.from_mxnet(block, shape={input_name:
    0 码力 | 24 页 | 417.46 KB | 5 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    Efficient Mixture-of-Experts Language Model DeepSeek-AI research@deepseek.com Abstract We present DeepSeek-V2, a strong Mixture-of-Experts (MoE) language model characterized by economical training and DeepSeek-V2 and its chat versions still achieve top-tier performance among open-source models. The model checkpoints are available at h t t p s : / / g i t h u b . c o m / d e e p s e e k - a i / D e e p Work 21 A Contributions and Acknowledgments 27 B DeepSeek-V2-Lite: A 16B Model Equipped with MLA and DeepSeekMoE 29 2 B.1 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    design foundations In its most fundamental form, an agent consists of three core components: 01 Model The LLM powering the agent’s reasoning and decision-making 02 Tools External functions or APIs the the workflow. Not every task requires the smartest model—a simple retrieval or intent classification task may be handled by a smaller, faster model, while harder tasks like deciding whether to approve approve a refund may benefit from a more capable model. An approach that works well is to build your agent prototype with the most capable model for every task to establish a performance baseline. From there
    0 码力 | 34 页 | 7.00 MB | 5 月前
    3
  • pdf文档 01 Structure of Scientific Papers - Introduction to Scientific Writing WS2021/22

    systems internals, end-to-end data science lifecycle)  2012-2018 IBM Research – Almaden, USA  Declarative large-scale machine learning  Optimizer and runtime of Apache SystemML  2011 PhD TU Dresden and friends  Develop your taste for good research topics  Topic selection needs time  pipeline model  Ex. Compressed Linear Algebra  Problem: Iterative ML algorithms + memory-bandwidth-bound operations repeated read-only data access and I/O-bound matrix-vector multiplications to converge to an optimal model. It is crucial for performance to fit the data into single-node or distributed main memory. % 2
    0 码力 | 36 页 | 1.12 MB | 1 年前
    3
  • pdf文档 DeepSeek从入门到精通(20250204)

    应用“多角度”提示探索不同视角 3. 使用“深化”提示拓展初始想法 4. 设计“反转”提示寻找替代方案 思维拓展的提示语链设计建立在创造性认知理论的基础上。根据Geneplore模型(Generate-Explore Model), 创造性思维包括两个主要阶段: 思维拓展的提示语链设计 聚合思维的提示语链设计 基于“FOCUS”框架 • Filter(筛选):评估和选择最佳想法 • Optimize(优化):改进选定的想法 假设需要撰写一篇关于“气候变化”的文章,目的是 “增强公众意识并促进行动”: 陈述型(Assertive) 指令型(Directive) 承诺型(Commissive) 表达型(Expressive) 宣告型(Declarative) 主题聚焦机制(TFM):锁定核心内容 �TFM的理论基础: TFM借鉴了认知语言学中的“原型理论”和“框架语义 学”,可开发以下技巧: �TFM实施步骤: 1. 定义主题原型:列出主题的关键特征和代表性例子
    0 码力 | 104 页 | 5.37 MB | 7 月前
    3
  • pdf文档 清华大学 DeepSeek 从入门到精通

    应用“多角度”提示探索不同视角 3. 使用“深化”提示拓展初始想法 4. 设计“反转”提示寻找替代方案 思维拓展的提示语链设计建立在创造性认知理论的基础上。根据Geneplore模型(Generate-Explore Model), 创造性思维包括两个主要阶段: 思维拓展的提示语链设计 聚合思维的提示语链设计 基于“FOCUS”框架 • Filter(筛选):评估和选择最佳想法 • Optimize(优化):改进选定的想法 假设需要撰写一篇关于“气候变化”的文章,目的是 “增强公众意识并促进行动”: 陈述型(Assertive) 指令型(Directive) 承诺型(Commissive) 表达型(Expressive) 宣告型(Declarative) 主题聚焦机制(TFM):锁定核心内容 �TFM的理论基础: TFM借鉴了认知语言学中的“原型理论”和“框架语义 学”,可开发以下技巧: �TFM实施步骤: 1. 定义主题原型:列出主题的关键特征和代表性例子
    0 码力 | 103 页 | 5.40 MB | 8 月前
    3
  • pdf文档 03 Experiments, Reproducibility, and Projects - Introduction to Scientific Writing WS2021/22

    avoids join with text Experiments and Result Presentation [Matthias Boehm et al: SystemDS: A Declarative Machine Learning System for the End-to-End Data Science Lifecycle. CIDR 2020] 17 706.015 Introduction
    0 码力 | 31 页 | 1.38 MB | 1 年前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    writing styles 59 For few-shot prompting with classification tasks, mix up the classes 59 Adapt to model updates 60 Experiment with output formats 60 JSON Repair 61 Working with Schemas 62 Experiment When thinking about a large language model input and output, a text prompt (sometimes accompanied by other modalities such as image prompts) is the input the model uses to predict a specific output. You can be complicated. Many aspects of your prompt affect its efficacy: the model you use, the model’s training data, the model configurations, your word-choice, style and tone, structure, and context
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 Trends Artificial Intelligence

    Change Happening Faster Than Ever? Yes, It Is • AI User + Usage + CapEx Growth = Unprecedented • AI Model Compute Costs High / Rising + Inference Costs Per Token Falling = Performance Converging + Developer 2/24 2/25 4/25 75% 60% 10% 21% 15% 0% Details on Page 293 USA – LLM #1 China USA – LLM #2 AI Model Compute Costs High / Rising + Inference Costs Per Token Falling = Performance Converging + Developer Change Happening Faster Than Ever? Yes, It Is • AI User + Usage + CapEx Growth = Unprecedented • AI Model Compute Costs High / Rising + Inference Costs Per Token Falling = Performance Converging + Developer
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • pdf文档 KiCad 8.0 Schematic Editor

    their parent. Flat hierarchies can be used to represent a non-hierarchical design. Each hierarchy model can be useful; the most appropriate one depends on the design. Simple hierarchy An example of a ( ${variable_name} ) must be defined in Schematic Setup before they can be used. Error SPICE model issue SPICE models must not have syntax errors or other problems. Ignore 79 Violation Description printed circuit board. It provides footprint list filtering, footprint viewing, and 3D component model viewing to help ensure the correct footprint is associated with each component. Components can be
    0 码力 | 200 页 | 8.34 MB | 1 年前
    3
共 413 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 42
前往
页
相关搜索词
DynamicModelinTVMDeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageOpenAIpracticalguidetobuildingagents01StructureScientificPapersIntroductionWritingWS202122入门精通20250204清华华大大学清华大学03ExperimentsReproducibilityProjectsGooglePromptEngineeringv7TrendsArtificialIntelligenceKiCad8.0SchematicEditor
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩