Dynamic Model in TVM
rights reserved. Presenter: Haichen Shen, Yao Wang Amazon SageMaker Neo, Deep Engine Science Dynamic Model in TVM AWS AI© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Models with models© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Support dynamic model in TVM ● Support Any-dim in typing ● Use shape function to compute the type at runtime ● Virtual input_name = "data" input_shape = [tvm.relay.Any(), 3, 224, 224] dtype = "float32" block = get_model('resnet50_v1', pretrained=True) mod, params = relay.frontend.from_mxnet(block, shape={input_name:0 码力 | 24 页 | 417.46 KB | 5 月前3DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model
Efficient Mixture-of-Experts Language Model DeepSeek-AI research@deepseek.com Abstract We present DeepSeek-V2, a strong Mixture-of-Experts (MoE) language model characterized by economical training and DeepSeek-V2 and its chat versions still achieve top-tier performance among open-source models. The model checkpoints are available at h t t p s : / / g i t h u b . c o m / d e e p s e e k - a i / D e e p Work 21 A Contributions and Acknowledgments 27 B DeepSeek-V2-Lite: A 16B Model Equipped with MLA and DeepSeekMoE 29 2 B.1 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0 码力 | 52 页 | 1.23 MB | 1 年前3OpenAI 《A practical guide to building agents》
design foundations In its most fundamental form, an agent consists of three core components: 01 Model The LLM powering the agent’s reasoning and decision-making 02 Tools External functions or APIs the the workflow. Not every task requires the smartest model—a simple retrieval or intent classification task may be handled by a smaller, faster model, while harder tasks like deciding whether to approve approve a refund may benefit from a more capable model. An approach that works well is to build your agent prototype with the most capable model for every task to establish a performance baseline. From there0 码力 | 34 页 | 7.00 MB | 5 月前301 Structure of Scientific Papers - Introduction to Scientific Writing WS2021/22
systems internals, end-to-end data science lifecycle) 2012-2018 IBM Research – Almaden, USA Declarative large-scale machine learning Optimizer and runtime of Apache SystemML 2011 PhD TU Dresden and friends Develop your taste for good research topics Topic selection needs time pipeline model Ex. Compressed Linear Algebra Problem: Iterative ML algorithms + memory-bandwidth-bound operations repeated read-only data access and I/O-bound matrix-vector multiplications to converge to an optimal model. It is crucial for performance to fit the data into single-node or distributed main memory. % 20 码力 | 36 页 | 1.12 MB | 1 年前3DeepSeek从入门到精通(20250204)
应用“多角度”提示探索不同视角 3. 使用“深化”提示拓展初始想法 4. 设计“反转”提示寻找替代方案 思维拓展的提示语链设计建立在创造性认知理论的基础上。根据Geneplore模型(Generate-Explore Model), 创造性思维包括两个主要阶段: 思维拓展的提示语链设计 聚合思维的提示语链设计 基于“FOCUS”框架 • Filter(筛选):评估和选择最佳想法 • Optimize(优化):改进选定的想法 假设需要撰写一篇关于“气候变化”的文章,目的是 “增强公众意识并促进行动”: 陈述型(Assertive) 指令型(Directive) 承诺型(Commissive) 表达型(Expressive) 宣告型(Declarative) 主题聚焦机制(TFM):锁定核心内容 �TFM的理论基础: TFM借鉴了认知语言学中的“原型理论”和“框架语义 学”,可开发以下技巧: �TFM实施步骤: 1. 定义主题原型:列出主题的关键特征和代表性例子0 码力 | 104 页 | 5.37 MB | 7 月前3清华大学 DeepSeek 从入门到精通
应用“多角度”提示探索不同视角 3. 使用“深化”提示拓展初始想法 4. 设计“反转”提示寻找替代方案 思维拓展的提示语链设计建立在创造性认知理论的基础上。根据Geneplore模型(Generate-Explore Model), 创造性思维包括两个主要阶段: 思维拓展的提示语链设计 聚合思维的提示语链设计 基于“FOCUS”框架 • Filter(筛选):评估和选择最佳想法 • Optimize(优化):改进选定的想法 假设需要撰写一篇关于“气候变化”的文章,目的是 “增强公众意识并促进行动”: 陈述型(Assertive) 指令型(Directive) 承诺型(Commissive) 表达型(Expressive) 宣告型(Declarative) 主题聚焦机制(TFM):锁定核心内容 �TFM的理论基础: TFM借鉴了认知语言学中的“原型理论”和“框架语义 学”,可开发以下技巧: �TFM实施步骤: 1. 定义主题原型:列出主题的关键特征和代表性例子0 码力 | 103 页 | 5.40 MB | 8 月前303 Experiments, Reproducibility, and Projects - Introduction to Scientific Writing WS2021/22
avoids join with text Experiments and Result Presentation [Matthias Boehm et al: SystemDS: A Declarative Machine Learning System for the End-to-End Data Science Lifecycle. CIDR 2020] 17 706.015 Introduction0 码力 | 31 页 | 1.38 MB | 1 年前3Google 《Prompt Engineering v7》
writing styles 59 For few-shot prompting with classification tasks, mix up the classes 59 Adapt to model updates 60 Experiment with output formats 60 JSON Repair 61 Working with Schemas 62 Experiment When thinking about a large language model input and output, a text prompt (sometimes accompanied by other modalities such as image prompts) is the input the model uses to predict a specific output. You can be complicated. Many aspects of your prompt affect its efficacy: the model you use, the model’s training data, the model configurations, your word-choice, style and tone, structure, and context0 码力 | 68 页 | 6.50 MB | 6 月前3Trends Artificial Intelligence
Change Happening Faster Than Ever? Yes, It Is • AI User + Usage + CapEx Growth = Unprecedented • AI Model Compute Costs High / Rising + Inference Costs Per Token Falling = Performance Converging + Developer 2/24 2/25 4/25 75% 60% 10% 21% 15% 0% Details on Page 293 USA – LLM #1 China USA – LLM #2 AI Model Compute Costs High / Rising + Inference Costs Per Token Falling = Performance Converging + Developer Change Happening Faster Than Ever? Yes, It Is • AI User + Usage + CapEx Growth = Unprecedented • AI Model Compute Costs High / Rising + Inference Costs Per Token Falling = Performance Converging + Developer0 码力 | 340 页 | 12.14 MB | 4 月前3KiCad 8.0 Schematic Editor
their parent. Flat hierarchies can be used to represent a non-hierarchical design. Each hierarchy model can be useful; the most appropriate one depends on the design. Simple hierarchy An example of a ( ${variable_name} ) must be defined in Schematic Setup before they can be used. Error SPICE model issue SPICE models must not have syntax errors or other problems. Ignore 79 Violation Description printed circuit board. It provides footprint list filtering, footprint viewing, and 3D component model viewing to help ensure the correct footprint is associated with each component. Components can be0 码力 | 200 页 | 8.34 MB | 1 年前3
共 413 条
- 1
- 2
- 3
- 4
- 5
- 6
- 42
相关搜索词
DynamicModelinTVMDeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageOpenAIpracticalguidetobuildingagents01StructureScientificPapersIntroductionWritingWS202122入门精通20250204清华华大大学清华大学03ExperimentsReproducibilityProjectsGooglePromptEngineeringv7TrendsArtificialIntelligenceKiCad8.0SchematicEditor