积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(129)Python(129)Celery(51)Django(30)Tornado(20)PyMuPDF(1)

语言

全部英语(122)中文(简体)(6)

格式

全部PDF文档 PDF(74)其他文档 其他(55)
 
本次搜索耗时 0.086 秒,为您找到相关结果约 129 个.
  • 全部
  • 后端开发
  • Python
  • Celery
  • Django
  • Tornado
  • PyMuPDF
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 2_FPGA助力Python加速计算_陈志勇

    算法的并行化 Ø CPU: 多核 CPU Ø GPU: 多核处理器 Ø 硬件仿真:算法计算在FPGA里实现,输入和输出在 PC 端实现。 Ø Hardware in the loop simulation 加速计算 (Accelerate Computing) 多核处理器系统 8 Ø HDL:硬件描述语言 (Verilog, VHDL),通过与或非 门、触发器等逻辑电路实现一些特定的功能。 基本架构 9 Application Processor 64-bit Dual/Quad-Core 赛灵思 Zynq UltraScale+ MPSoC (16nm SOC 芯片) Real-Time Processors 32-bit Dual-Core Platform & Power Management Granular Power Control Functional Safety
    0 码力 | 33 页 | 8.99 MB | 1 年前
    3
  • pdf文档 FPGA助力Python加速计算 陈志勇

    算法的并行化 ➢ CPU: 多核 CPU ➢ GPU: 多核处理器 ➢ 硬件仿真:算法计算在FPGA里实现,输入和输出在 PC 端实现。 ➢ Hardware in the loop simulation 加速计算 (Accelerate Computing) 多核处理器系统 8 ➢ HDL:硬件描述语言 (Verilog, VHDL),通过与或非 门、触发器等逻辑电路实现一些特定的功能。 基本架构 9 Application Processor 64-bit Dual/Quad-Core 赛灵思 Zynq UltraScale+ MPSoC (16nm SOC 芯片) Real-Time Processors 32-bit Dual-Core Platform & Power Management Granular Power Control Functional Safety
    0 码力 | 34 页 | 4.19 MB | 1 年前
    3
  • pdf文档 Celery 2.0 Documentation

    source asynchronous task queue/job queue based on distributed message passing. It is focused on real-time operation, but supports scheduling as well. The execution units, called tasks, are executed concurrently remotely. Moni- toring You can capture everything happening with the workers in real-time by subscribing to events. A real-time web monitor is in development. Serial- ization Supports Pickle, JSON, YAML calculate_key(target) method applied to the target objects. This weak value dictionary is used to short-circuit creation so that multiple references to the same (object, function) pair produce the same BoundMethodWeakref
    0 码力 | 165 页 | 492.43 KB | 1 年前
    3
  • epub文档 Celery 2.0 Documentation

    source asynchronous task queue/job queue based on distributed message passing. It is focused on real-time operation, but supports scheduling as well. The execution units, called tasks, are executed concurrently remotely. Monitoring You can capture everything happening with the workers in real-time by subscribing to events. A real-time web monitor is in development. Serialization Supports Pickle, JSON, YAML, or calculate_key(target) method applied to the target objects. This weak value dictionary is used to short-circuit creation so that multiple references to the same (object, function) pair produce the same BoundMethodWeakref
    0 码力 | 284 页 | 332.71 KB | 1 年前
    3
  • pdf文档 Celery 2.1 Documentation

    source asynchronous task queue/job queue based on distributed message passing. It is focused on real-time operation, but supports scheduling as well. The execution units, called tasks, are executed concurrently remotely. Moni- toring You can capture everything happening with the workers in real-time by subscribing to events. A real-time web monitor is in development. Serial- ization Supports Pickle, JSON, YAML calculate_key(target) method applied to the target objects. This weak value dictionary is used to short-circuit creation so that multiple references to the same (object, function) pair produce the same BoundMethodWeakref
    0 码力 | 285 页 | 1.19 MB | 1 年前
    3
  • epub文档 Celery 2.1 Documentation

    source asynchronous task queue/job queue based on distributed message passing. It is focused on real-time operation, but supports scheduling as well. The execution units, called tasks, are executed concurrently remotely. Monitoring You can capture everything happening with the workers in real-time by subscribing to events. A real-time web monitor is in development. Serialization Supports Pickle, JSON, YAML, or calculate_key(target) method applied to the target objects. This weak value dictionary is used to short-circuit creation so that multiple references to the same (object, function) pair produce the same BoundMethodWeakref
    0 码力 | 463 页 | 861.69 KB | 1 年前
    3
  • pdf文档 Celery 2.3 Documentation

    source asynchronous task queue/job queue based on distributed message passing. It is focused on real-time operation, but supports scheduling as well. The execution units, called tasks, are executed concurrently only) Moni- toring You can capture everything happening with the workers in real-time by subscribing to events. A real-time web monitor is in development. Serial- ization Supports Pickle, JSON, YAML messages about what the worker is doing. These messages are called “events”. The events are used by real-time monitors to show what the cluster is doing, but they are not very useful for monitoring over a longer
    0 码力 | 334 页 | 1.25 MB | 1 年前
    3
  • pdf文档 Celery 2.2 Documentation

    source asynchronous task queue/job queue based on distributed message passing. It is focused on real-time operation, but supports scheduling as well. The execution units, called tasks, are executed concurrently only) Moni- toring You can capture everything happening with the workers in real-time by subscribing to events. A real-time web monitor is in development. Serial- ization Supports Pickle, JSON, YAML messages about what the worker is doing. These messages are called “events”. The events are used by real-time monitors to show what the cluster is doing, but they are not very useful for monitoring over a longer
    0 码力 | 314 页 | 1.26 MB | 1 年前
    3
  • epub文档 Celery 2.2 Documentation

    source asynchronous task queue/job queue based on distributed message passing. It is focused on real-time operation, but supports scheduling as well. The execution units, called tasks, are executed concurrently only) Monitoring You can capture everything happening with the workers in real-time by subscribing to events. A real-time web monitor is in development. Serialization Supports Pickle, JSON, YAML, or messages about what the worker is doing. These messages are called “events”. The events are used by real-time monitors to show what the cluster is doing, but they are not very useful for monitoring over a longer
    0 码力 | 505 页 | 878.66 KB | 1 年前
    3
  • epub文档 Celery 2.3 Documentation

    source asynchronous task queue/job queue based on distributed message passing. It is focused on real-time operation, but supports scheduling as well. The execution units, called tasks, are executed concurrently only) Monitoring You can capture everything happening with the workers in real-time by subscribing to events. A real-time web monitor is in development. Serialization Supports Pickle, JSON, YAML, or messages about what the worker is doing. These messages are called “events”. The events are used by real-time monitors to show what the cluster is doing, but they are not very useful for monitoring over a longer
    0 码力 | 530 页 | 900.64 KB | 1 年前
    3
共 129 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 13
前往
页
相关搜索词
FPGA助力Python加速计算陈志勇Celery2.0Documentation2.12.32.2
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩