积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(26)C++(26)

语言

全部中文(简体)(26)

格式

全部PPT文档 PPT(16)PDF文档 PDF(10)
 
本次搜索耗时 0.080 秒,为您找到相关结果约 26 个.
  • 全部
  • 后端开发
  • C++
  • 全部
  • 中文(简体)
  • 全部
  • PPT文档 PPT
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Hello 算法 1.0.0b4 C++版

    在无序区间抽出一张扑克牌,插入至有序区间的正确位置;完成后最左 3 张扑克已经有序。 4. 不断循环以上操作,直至所有扑克牌都有序后终止。 以上整理扑克牌的方法本质上就是「插入排序」算法,它在处理小型数据集时非常高效。许多编程语言的排 序库函数中都存在插入排序的身影。 Figure 1‑2. 扑克排序步骤 例三:货币找零。假设我们在超市购买了 69 元的商品,给收银员付了 100 元,则收银员需要给我们找 另一方面,数字零的原码有 +0 和 −0 两种表示方式。这意味着数字零对应着两个不同的二进制编码,而这 可能会带来歧义问题。例如,在条件判断中,如果没有区分正零和负零,可能会导致错误的判断结果。如果 我们想要处理正零和负零歧义,则需要引入额外的判断操作,其可能会降低计算机的运算效率。 +0 = 00000000 −0 = 10000000 与原码一样,反码也存在正负零歧义问题。为此,计算机进一步引入了「补码」。那么,补码有什么作用呢? 更简 单,更容易进行并行化处理,从而提高运算速度。 然而,这并不意味着计算机只能做加法。通过将加法与一些基本逻辑运算结合,计算机能够实现各种其他的 数学运算。例如,计算减法 ? − ? 可以转换为计算加法 ? + (−?) ;计算乘法和除法可以转换为计算多次加 法或减法。 现在,我们可以总结出计算机使用补码的原因:基于补码表示,计算机可以用同样的电路和操作来处理正数 和负数的加法,不需要
    0 码力 | 343 页 | 27.39 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.1.0 C++ 版

    “如果我当年学数据结构与算法的时候有《Hello 算法》,学起来应该会简单 10 倍!” ——李沐,亚马逊资深首席科学家 计算机的出现给世界带来了巨大变革,它凭借高速的计算能力和出色的可编程性,成为了执行算法与处理数 据的理想媒介。无论是电子游戏的逼真画面、自动驾驶的智能决策,还是 AlphaGo 的精彩棋局、ChatGPT 的自然交互,这些应用都是算法在计算机上的精妙演绎。 事实上,在计算机问世之前, 2 张扑克已经有序。 3. 不断循环步骤 2. ,每一轮将一张扑克牌从无序部分插入至有序部分,直至所有扑克牌都有序。 图 1‑2 扑克排序步骤 上述整理扑克牌的方法本质上是“插入排序”算法,它在处理小型数据集时非常高效。许多编程语言的排序 库函数中都有插入排序的身影。 例三:货币找零。假设我们在超市购买了 69 元的商品,给了收银员 100 元,则收银员需要找我们 31 元。他 会很自然地完成如图 2‑5 尾递归过程 Tip 请注意,许多编译器或解释器并不支持尾递归优化。例如,Python 默认不支持尾递归优化,因此即 使函数是尾递归形式,仍然可能会遇到栈溢出问题。 3. 递归树 当处理与“分治”相关的算法问题时,递归往往比迭代的思路更加直观、代码更加易读。以“斐波那契数列” 为例。 Question 给定一个斐波那契数列 0, 1, 1, 2, 3, 5, 8, 13, …
    0 码力 | 379 页 | 18.47 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0 C++版

    2 张扑克已经有序。 3. 不断循环步骤 2. ,每一轮将一张扑克牌从无序部分插入至有序部分,直至所有扑克牌都有序。 图 1‑2 扑克排序步骤 上述整理扑克牌的方法本质上是“插入排序”算法,它在处理小型数据集时非常高效。许多编程语言的排序 库函数中都有插入排序的身影。 例三:货币找零。假设我们在超市购买了 69 元的商品,给了收银员 100 元,则收银员需要找我们 31 元。他 会很自然地完成如图 图 2‑5 尾递归过程 � 请注意,许多编译器或解释器并不支持尾递归优化。例如,Python 默认不支持尾递归优化, 因此即使函数是尾递归形式,仍然可能会遇到栈溢出问题。 3. 递归树 当处理与“分治”相关的算法问题时,递归往往比迭代的思路更加直观、代码更加易读。以“斐波那契数列” 为例。 � 给定一个斐波那契数列 0, 1, 1, 2, 3, 5, 8, 13, … ,求该数列的第 从本质上看,递归体现了“将问题分解为更小子问题”的思维范式,这种分治策略至关重要。 ‧ 从算法角度看,搜索、排序、回溯、分治、动态规划等许多重要算法策略直接或间接地应用了这种思维 方式。 ‧ 从数据结构角度看,递归天然适合处理链表、树和图的相关问题,因为它们非常适合用分治思想进行分 析。 2.2.3 两者对比 总结以上内容,如表 2‑1 所示,迭代和递归在实现、性能和适用性上有所不同。 表 2‑1 迭代与递归特点对比
    0 码力 | 378 页 | 17.59 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b5 C++版

    2 张扑克已经有序。 3. 不断循环步骤 2. ,每一轮将一张扑克牌从无序部分插入至有序部分,直至所有扑克牌都有序。 图 1‑2 扑克排序步骤 上述整理扑克牌的方法本质上是“插入排序”算法,它在处理小型数据集时非常高效。许多编程语言的排序 库函数中都存在插入排序的身影。 例三:货币找零。假设我们在超市购买了 69 元的商品,给了收银员 100 元,则收银员需要找我们 31 元。他 会很自然地完成如图 图 2‑5 尾递归过程 请注意,许多编译器或解释器并不支持尾递归优化。例如,Python 默认不支持尾递归优化,因此即使函数 是尾递归形式,但仍然可能会遇到栈溢出问题。 3. 递归树 当处理与“分治”相关的算法问题时,递归往往比迭代的思路更加直观、代码更加易读。以“斐波那契数列” 为例。 � 给定一个斐波那契数列 0, 1, 1, 2, 3, 5, 8, 13, … ,求该数列的第 本质上看,递归体现“将问题分解为更小子问题”的思维范式,这种分治策略是至关重要的。 ‧ 从算法角度看,搜索、排序、回溯、分治、动态规划等许多重要算法策略都直接或间接地应用这种思维 方式。 ‧ 从数据结构角度看,递归天然适合处理链表、树和图的相关问题,因为它们非常适合用分治思想进行分 析。 2.3 时间复杂度 运行时间可以直观且准确地反映算法的效率。如果我们想要准确预估一段代码的运行时间,应该如何操作 呢? 1.
    0 码力 | 377 页 | 30.69 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.2.0 简体中文 C++ 版

    “如果我当年学数据结构与算法的时候有《Hello 算法》,学起来应该会简单 10 倍!” ——李沐,亚马逊资深首席科学家 计算机的出现给世界带来了巨大变革,它凭借高速的计算能力和出色的可编程性,成为了执行算法与处理数 据的理想媒介。无论是电子游戏的逼真画面、自动驾驶的智能决策,还是 AlphaGo 的精彩棋局、ChatGPT 的自然交互,这些应用都是算法在计算机上的精妙演绎。 事实上,在计算机问世之前, 2 张扑克已经有序。 3. 不断循环步骤 2. ,每一轮将一张扑克牌从无序部分插入至有序部分,直至所有扑克牌都有序。 图 1‑2 扑克排序步骤 上述整理扑克牌的方法本质上是“插入排序”算法,它在处理小型数据集时非常高效。许多编程语言的排序 库函数中都有插入排序的身影。 例三:货币找零。假设我们在超市购买了 69 元的商品,给了收银员 100 元,则收银员需要找我们 31 元。他 会很自然地完成如图 2‑5 尾递归过程 Tip 请注意,许多编译器或解释器并不支持尾递归优化。例如,Python 默认不支持尾递归优化,因此即 使函数是尾递归形式,仍然可能会遇到栈溢出问题。 3. 递归树 当处理与“分治”相关的算法问题时,递归往往比迭代的思路更加直观、代码更加易读。以“斐波那契数列” 为例。 Question 给定一个斐波那契数列 0, 1, 1, 2, 3, 5, 8, 13, …
    0 码力 | 379 页 | 18.48 MB | 10 月前
    3
  • pdf文档 《深入浅出MFC》2/e

    console programming。 ■ C++ 重要技术:类别与对象、this 指针与继承、静态成员、虚拟函数与多态、 深入淺出 MFC 28 模板(template)类别、异常处理(exception handling)。 ■ MFC 六大技术之简化仿真(Console 程序) 第二篇【欲善工事先利其器】提供给对Visual C++ 整合环境全然陌生的朋友一个导引。 这一篇当然不能取代Visual 程序的第一印象,也对类别的静态成员函 式应用于callback 函数做了一个示范。每有窗口异动(产生WM_PAINT), 就有一个"Hello MFC" 字符串从天而降。此外,也示范了空闲时间(idle time) 的处理。 ■ ■ ■ ■ □ □ □ □ □ □ □ □ 深入淺出 MFC 36 Scribble Step0~Step5 : ¡ ¨ Scribble¡ ¨ 范例之于MFC M_TEXT。15寸监视器的 640 个图素换到300dpi 上才不过两英寸多一点。 我们可以在这个版本中学习以AppWizard 制作骨干,并大量运用ClassWizard 为我 们增添消息处理函数;也可以学习如何设计Document,如何改写CView::OnDraw 和 CDocument::Serialize,这是两个极端重要之虚拟函数。 Scribble Step2-修改使
    0 码力 | 1009 页 | 11.08 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 06 TBB 开启的并行编程之旅

    Git 2.x (作业上传到 GitHub ) CUDA Toolkit 10.0 以上( GPU 专题) 第 0 章:从并发到并行 摩尔定律:停止增长了吗? • 晶体管的密度的确仍在指数增长,但处理器主 频却开始停止增长了,甚至有所下降。 • 很长时间之前我们就可以达到 2GHz ( 2001 年 8 月),根据 2003 年的趋势,在 2005 年 初我们就应该研发出 10GHz 的芯片。 神话与现实: 2 * 3GHz < 6GHz • 一个由双核组成的 3GHz 的 CPU 实际上提供了 6GHz 的处理能力,是吗? • 显然不是。甚至在两个处理器上同时运行两个线程也不见得可以获得两倍的性能。相似的 ,大多数多线程的应用不会比双核处理器的两倍快。他们应该比单核处理器运行的快,但 是性能毕竟不是线性增长。 • 为什么无法做到呢?首先,为了保证缓存一致性以及其他握手协议需要运行时间开销。在 • 并发:单核处理器,操作系统通过时间片调 度算法,轮换着执行着不同的线程,看起来 就好像是同时运行一样,其实每一时刻只有 一个线程在运行。目的:异步地处理多个不 同的任务,避免同步造成的阻塞。 • 并行:多核处理器,每个处理器执行一个线 程,真正的同时运行。目的:将一个任务分 派到多个核上,从而更快完成任务。 举个例子 • 并发:某互联网公司购置了一台单核处理 器的服务器,他正同时处理
    0 码力 | 116 页 | 15.85 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 04 从汇编角度看编译器优化

    rsi, rdi, rsp, rbp, r8, r9, r10, r11, ..., r15 • 其中 r8 到 r15 是 64 位 x86 新增的寄存器,给了汇编程序员更大的空间,降低了编译 器处理寄存器翻车( register spill )的压力。 • 因此 64 位比 32 位机器相比,除了内存突破 4GB 限制外,也有一定性能优势。 8 位, 16 位, 32 位, 64 位版本 size_t 在 64 位系统上相当于 uint64_t size_t 在 32 位系统上相当于 uint32_t 从而不需要用 movslq 从 32 位符号扩展 到 64 位,更高效。而且也能处理数组大 小超过 INT_MAX 的情况,推荐始终用 size_t 表示数组大小和索引。 浮点作为参数和返回: xmm 系列寄存器 xmm0 = xmm0 + xmm1 参数分别通过 xmm0 为什么需要 SIMD ?单个指令处理四个数据 • 这种单个指令处理多个数据的技术称为 SIMD ( single-instruction multiple-data )。 • 他可以大大增加计算密集型程序的吞吐量。 • 因为 SIMD 把 4 个 float 打包到一个 xmm 寄存器里同时运算,很像数学中矢量的逐元 素加法。因此 SIMD 又被称为矢量,而原始的一次只能处理 1 个 float 的方式,则称为
    0 码力 | 108 页 | 9.47 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 08 CUDA 开启的 GPU 编程

    上的编译器(通常是系统自带的编译 器比如 gcc 和 msvc )生成 CPU 部分的指令码。然后送到真 正的 GPU 编译器生成 GPU 指令码。最后再链接成同一个文件 ,看起来好像只编译了一次一样,实际上你的代码会被预处理很 多次。 • 他在 GPU 编译模式下会定义 __CUDA_ARCH__ 这个宏,利用 #ifdef 判断该宏是否定义,就可以判断当前是否处于 GPU 模式 ,从而实现一个函数针对 GPU Hello, world! 打印了三遍! • 原来,三重尖括号里的第二个参数决定着启动 kernel 时所用 GPU 的线程数量。 • GPU 是为并行而生的,可以开启很大数量的 线程,用于处理大吞吐量的数据。 获取线程编号 • 可以通过 threadIdx.x 获取当前线程的编 号,我们打印一下试试看。 • 这是 CUDA 中的特殊变量之一,只有在 核函数里才可以访问。 • 可以看到线程编号从 ),而每个板块具有的线程 数量( blockDim )则是固定的 128 。 • 因此,我们可以用 n / 128 作为 gridDim , 这样总的线程数刚好的 n ,实现了每个线程 负责处理一个元素。 边角料难题 • 但这样的话, n 只能是的 128 的整数倍 ,如果不是就会漏掉最后几个元素。 • 主要是 C 语言的整数除法 n / nthreads ,他是向下取整的,比如
    0 码力 | 142 页 | 13.52 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 01 学 C++ 从 CMake 学起

    可以自动检测源文件和头文件之间的依赖关系,导出到 Makefile 里。 • make 的语法非常简单,不像 shell 或 python 可以做很多判断等。 • CMake 具有相对高级的语法,内置的函数能够处理 configure , install 等常见需求。 • 不同的编译器有不同的 flag 规则,为 g++ 准备的参数可能对 MSVC 不适用。 • CMake 可以自动检测当前的编译器,需要添加哪些 。然后用一个小程序,自动在编译前把引号 内的文件名 hello.h 的内容插入到记号所在的位置,这样不就只用编辑 hello.h 一次了嘛 ~ • 后来,这个编译前替换的步骤逐渐变成编译器的了一部分,称为预处理阶段, #define 定 义的宏也是这个阶段处理的。 • 此外,在实现的文件 hello.cpp 中导入声明的文件 hello.h 是个好习惯,可以保证当 hello.cpp 被修改时,比如改成 hello(int) 声明了该类的头文件,像这样递归 地 #include 即可: 预处理后变成: 头文件进阶 - 递归地使用头文件(续) • 但是这样造成一个问题,就是如果多个头文件都引用了 MyClass.h ,那么 MyClass 会被 重复定义两遍: • 解决方案:在头文件前面加上一行: #pragma once • 这样当预处理器第二次读到同一个文件时,就会自动跳过 • 通常头文件都不想被重复导入,因此建议在每个头文件前加上这句话
    0 码力 | 32 页 | 11.40 MB | 1 年前
    3
共 26 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
Hello算法1.00b4C++1.10b51.2简体中文简体中文深入深入浅出MFC高性性能高性能并行编程优化课件06040801
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩