积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(14)C++(14)

语言

全部中文(简体)(12)英语(1)中文(繁体)(1)

格式

全部PDF文档 PDF(9)PPT文档 PPT(5)
 
本次搜索耗时 0.067 秒,为您找到相关结果约 14 个.
  • 全部
  • 后端开发
  • C++
  • 全部
  • 中文(简体)
  • 英语
  • 中文(繁体)
  • 全部
  • PDF文档 PDF
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Just-in-Time Compilation - J F Bastien - CppCon 2020

    �**p2) { AddCallProto("OpenFile()"); AddCallProto("DataLoad(VALUE)"); AddCallProto("DataStore(VALUE)"); AddCallProto("CloseFile()"); AddCallProgram(ProgramBefore, "OpenFile"); A if (IsInstType(i, InstTypeStore)) AddCallInst(i, InstBefore, "DataStore", EffAddrValue); } } – 1994 A system for building customized program analysis tools
    0 码力 | 111 页 | 3.98 MB | 5 月前
    3
  • pdf文档 Hello 算法 1.1.0 C++ 版

    10.3 二分查找边界 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 10.4 哈希优化策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 10.5 重识搜索算法 . . . . 1 分治算法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 12.2 分治搜索策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 12.3 构建二叉树问题 . . . 轮的重复后,就能将其牢记在心。推荐的题单和刷题计划请见此 GitHub 仓库。 3. 阶段三:搭建知识体系。在学习方面,我们可以阅读算法专栏文章、解题框架和算法教材,以不断丰富 知识体系。在刷题方面,可以尝试采用进阶刷题策略,如按专题分类、一题多解、一解多题等,相关的 刷题心得可以在各个社区找到。 如图 0‑8 所示,本书内容主要涵盖“阶段一”,旨在帮助你更高效地展开阶段二和阶段三的学习。 第 0 章 前言 hello‑algo
    0 码力 | 379 页 | 18.47 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0 C++版

    10.3 二分查找边界 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 10.4 哈希优化策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 10.5 重识搜索算法 . . . . 1 分治算法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 12.2 分治搜索策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 12.3 构建二叉树问题 . . . ,通常在进行 3~5 轮的重复后,就能将其牢记在心。 3. 阶段三:搭建知识体系。在学习方面,我们可以阅读算法专栏文章、解题框架和算法教材,以不断丰富 知识体系。在刷题方面,可以尝试采用进阶刷题策略,如按专题分类、一题多解、一解多题等,相关的 刷题心得可以在各个社区找到。 如图 0‑8 所示,本书内容主要涵盖“阶段一”,旨在帮助你更高效地展开阶段二和阶段三的学习。 第 0 章 前言 hello‑algo
    0 码力 | 378 页 | 17.59 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b5 C++版

    10.3 二分查找边界 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 10.4 哈希优化策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 10.5 重识搜索算法 . . . . 1 分治算法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 12.2 分治搜索策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 12.3 构建二叉树问题 . . . 照“艾宾浩斯遗忘曲线”来复习题目,通常在进行 3‑5 轮的重复后,就能将其牢记在心。 3. 搭建知识体系。在学习方面,我们可以阅读算法专栏文章、解题框架和算法教材,以不断丰富知识体 系。在刷题方面,可以尝试采用进阶刷题策略,如按专题分类、一题多解、一解多题等,相关的刷题心 得可以在各个社区找到。 如图 0‑7 所示,本书内容主要涵盖“第一阶段”,旨在帮助你更高效地展开第二和第三阶段的学习。 第 0 章 前言 hello‑algo
    0 码力 | 377 页 | 30.69 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.2.0 简体中文 C++ 版

    10.3 二分查找边界 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 10.4 哈希优化策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 10.5 重识搜索算法 . . . . 1 分治算法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 12.2 分治搜索策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 12.3 构建二叉树问题 . . . 轮的重复后,就能将其牢记在心。推荐的题单和刷题计划请见此 GitHub 仓库。 3. 阶段三:搭建知识体系。在学习方面,我们可以阅读算法专栏文章、解题框架和算法教材,以不断丰富 知识体系。在刷题方面,可以尝试采用进阶刷题策略,如按专题分类、一题多解、一解多题等,相关的 刷题心得可以在各个社区找到。 如图 0‑8 所示,本书内容主要涵盖“阶段一”,旨在帮助你更高效地展开阶段二和阶段三的学习。 第 0 章 前言 www
    0 码力 | 379 页 | 18.48 MB | 10 月前
    3
  • pdf文档 Hello 算法 1.0.0b4 C++版

    2. 二分查找边界 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 10.3. 哈希优化策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 10.4. 重识搜索算法 . . . 分治算法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 12.2. 分治搜索策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 12.3. 构建二叉树问题 . . . 照“艾宾浩斯遗忘曲线”来复习题目,通常在进行 3‑5 轮的重复后,就能将其牢记在心。 3. 搭建知识体系。在学习方面,我们可以阅读算法专栏文章、解题框架和算法教材,以不断丰富知识体 系。在刷题方面,可以尝试采用进阶刷题策略,如按专题分类、一题多解、一解多题等,相关的刷题心 得可以在各个社区找到。 作为一本入门教程,本书内容主要涵盖“第一阶段”,旨在帮助你更高效地展开第二和第三阶段的学习。 Figure 0‑7.
    0 码力 | 343 页 | 27.39 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.2.0 繁体中文 C++ 版

    10.3 二分搜尋邊界 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 10.4 雜湊最佳化策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 10.5 重識搜尋演算法 . . . . 1 分治演算法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 12.2 分治搜尋策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 12.3 構建二元樹問題 . . . 輪的重複後,就能將其牢記在心。推薦的題單和刷題計劃請見此 GitHub 倉庫。 3. 階段三:搭建知識體系。在學習方面,我們可以閱讀演算法專欄文章、解題框架和演算法教材,以不斷 豐富知識體系。在刷題方面,可以嘗試採用進階刷題策略,如按專題分類、一題多解、一解多題等,相 關的刷題心得可以在各個社群找到。 如圖 0‑8 所示,本書內容主要涵蓋“階段一”,旨在幫助你更高效地展開階段二和階段三的學習。 第 0 章 前言 www
    0 码力 | 379 页 | 18.79 MB | 10 月前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 13 C++ STL 容器全解之 vector

    noexcept; vector 容器: resize 的优化策略 • 注意这里 resize(7) 之后容量实际上扩充到了 10 而不是刚好 7 ,为什么 ? • 因为标准库的设计者非常聪明,他料想到了你 resize(7) 以后可能还会来 个 resize(8) 甚至 resize(9) 之类的。为了减少重复分配的次数,他有一 个策略:当 resize 后的新尺寸变化较小时,则自动扩容至原尺寸的两倍 尺寸总是小于等于容量。 • 尺寸范围内都是已初始化的内存 ( 零 ) 。 • 尺寸到容量之间的范围是未初始化的。 • size_t resize(size_t n); vector 容器: resize 的优化策略 • 不过如果 resize 后的尺寸还超过了原先尺寸的两倍,就没 有这个效果了。 • 也就是说 resize(n) 的逻辑是扩容至 max(n, capacity * 2) 。 • size_t
    0 码力 | 90 页 | 4.93 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 06 TBB 开启的并行编程之旅

    比较高效 AMD 的 wrap 大小 64 ,尹伟达的 wrap 大小 32 高性能计算既然要高性能,必须针对不同硬 件优化,而优化策略都不一样,何谈统一? 黄仁勋回应称:单机上 CPU 的并行,多机上的 CPU 并行,单机单卡 GPU ,单机 多卡 GPU ,每一种要采用的策略都完全不同,表示不看好 oneapi 能统一异构计算 …… 现在流行改名运动? Facebook 改名 Meta ? TBB
    0 码力 | 116 页 | 15.85 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 05 C++11 开始的多线程编程

    如果是这种顺序,最后 t1 的写入就被 t2 覆盖了,从而 counter 只增加了 1 ,而没有像预期的那样增加 2 。 • 更不用说现代 CPU 还有高速缓存,乱序执行,指令级并行等 优化策略,你根本不知道每条指令实际的先后顺序。 暴力解决:用 mutex 上锁 • 这样的确可以防止多个线程同时修改 counter 变量,从而不会冲突。 • 问题: mutex 太过重量级,他会让线程被 atomic :有专门的硬件指令加持 • 因此可以用更轻量级的 atomic ,对他的 += 等 操作,会被编译器转换成专门的指令。 • CPU 识别到该指令时,会锁住内存总线,放弃 乱序执行等优化策略(将该指令视为一个同步点 ,强制同步掉之前所有的内存操作),从而向你 保证该操作是原子 (atomic) 的(取其不可分割 之意),不会加法加到一半另一个线程插一脚进 来。 • 对于程序员,只需把
    0 码力 | 79 页 | 14.11 MB | 1 年前
    3
共 14 条
  • 1
  • 2
前往
页
相关搜索词
JustinTimeCompilationBastienCppCon2020Hello算法1.1C++1.00b51.2简体中文简体中文0b4繁体繁体中文高性性能高性能并行编程优化课件130605
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩