00 Deepseek官方提示词
这篇文章的大纲 3. 中英翻译专家:中英文互译,对用户输入内容进行翻译 SYSTEM 你是一个中英文翻译专家,将用户输入的中文翻译成英文,或将用户输入的英文翻译成中文。对于非中文内容, 它将提供中文翻译结果。用户可以向助手发送需要翻译的内容,助手会回答相应的翻译结果,并确保符合中文语 言习惯,你可以调整语气和风格,并考虑到某些词语的文化内涵和地区差异。同时作为翻译家,需将原文翻译成 具有信达雅标准的译文。"信" 具有信达雅标准的译文。"信" 即忠实于原文的内容与意图;"达" 意味着译文应通顺易懂,表达清晰;"雅" 则 追求译文的文化审美和语言的优美。目标是创作出既忠于原作精神,又符合目标语言文化和读者审美的翻译。 USER 牛顿第一定律:任何一个物体总是保持静止状态或者匀速直线运动状态,直到有作用在它上面的外力迫使它改变 这种状态为止。 如果作用在物体上的合力为零,则物体保持匀速直线运动。 即物体的速度保持不变且加速度为 号运载火箭最短发射间隔纪录。 美国联邦航空管理局于 8 月 30 日表示,尽管对太空探索技术公司的调查仍在进行,但已允许其猎鹰 9 号运载火箭 恢复发射。目前,双方并未透露 8 月 28 日助推器着陆失败事故的详细信息。尽管发射已恢复,但原计划进行五天 “ ” 太空活动的 北极星黎明 (Polaris Dawn)任务却被推迟。美国太空探索技术公司为该任务正在积极筹备,等 待美国联邦航空管理局的最终批准后尽快进行发射。0 码力 | 4 页 | 7.93 KB | 7 月前3清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单
案、法律意见书等,提高律师工作效率。 • 智能医疗数据分析与诊断:构建智能医疗 平台,分析病历、检查报告和基因数据,帮助 医生提供更准确的诊断与治疗方案。 • 金融风险预测与管理:开发金融风险分析 工具,收集并分析市场数据,预测风险并为金 融机构提供管理建议。 • 智能文学创作辅助:为作家提供创作灵感 和文本构思,生成符合中文文学传统的故事情 节和诗句,助力突破创作瓶颈。 • 智能广告创意生成:根据产品特点和目标 高频交易数据分析:利用o3mini快速处理 高频交易数据,识别市场趋势和交易模式,为 交易者提供实时决策支持。 • 数据报告自动化生成:基于o3mini自动 生成格式化的数据报告,包括图表、表格和文 字说明,帮助管理者快速理解分析结果。 • 数据接口标准化:根据标准格式输出数据, 利用o3mini方便不同系统和平台之间的数据 共享,提升跨机构协作效率。 • 情感分析与数据解读:利用o3mini结合 情感分析,对数据进行深入解读,帮助市场调 指令:我想让你充当一名科研类的英汉翻译,我会向你提供一种语言的一些段落,你的任务是将这些段落准确地、学术性 地翻译成另一种语言。翻译后不要重复原文提供的段落。您应使用人工智能工具(如自然语言处理)以及有关有效写作技巧 的修辞知识和经验进行回复。我会给你如下段落,请告诉我是用什么语言写的,然后翻译。我希望你能以标记表的形式给出 输出结果,其中第一列是原文,第二列是翻译后的句子,每行只给出一个句子0 码力 | 85 页 | 8.31 MB | 7 月前3清华大学 普通人如何抓住DeepSeek红利
本生成、语义理解、计算推理、代码生成补全等应用场 景, 支持联网搜索与深度思考模式,同时支持文件上传,能够扫描读取各类文件及图片中的文字内容。 决策支持 文体转换 个性化推荐 翻译与转换 多语言翻译 异常检测 多源信息融合 知识与推理 知识图谱构建 流程优化 数据可视化 数据分析 趋势分析 多模态交互 任务执行 任务协调 工具调用 格式转换 关系抽取 语言理解 文章/故事/诗歌写作 营销文案 、广告语生成 社交媒体内容(如推文 、帖子) 剧本或对话设计 l 摘要与改写 长文本摘要(论文 、报告) 文本简化(降低复杂度) 多语言翻译与本地化 l 结构化生成 表格 、列表生成(如日程安排 、 菜谱) 代码注释 、文档撰写 文本生成 文本生成 03 02 01 语义分析 • 语义解析 • 情感分析(评论、反馈) 体系化 方案不可行 Python验算 无符合数字 有符合数字 如何使用DeepSeek处理生活中的事务 “生活太累?DeepSeek帮你‘减负’到家! 场景1:职场妈妈的晨间战役(日常琐事管理) 优先级排序(幼儿园事务>会议准备>生活采购) 生成最优动线:地图标注幼儿园/干洗店/超市与公司的位置关系 即时服务对接: ✓ 调用社区跑腿API下单手工材料配送 ✓ 接入干洗店智能柜系统预约取件码0 码力 | 65 页 | 4.47 MB | 7 月前3DeepSeek从入门到精通(20250204)
代码注释、文档撰写 结构化生成 文章/故事/诗歌写作 营销文案、广告语生成 社交媒体内容(如推文、帖子) 剧本或对话设计 文本创作 长文本摘要(论文、报告) 文本简化(降低复杂度) 多语言翻译与本地化 摘要与改写 02 01 03 文本生成 自然语言理解与分析 知识推理 知识推理 逻辑问题解答(数学、常识推 理) 因果分析(事件关联性) 语义分析 语义解析 情感分析(评论、反馈) 并非全面更强,仅在其训练目标领域显著优于通用模型 通用场景更灵活,但专项任务需依赖提示语补偿能力 • 例如:GPT-3、GPT-4(OpenAI),BERT(Google),主要用于语言生成、语言理解、文本分类、翻译 等任务。 快思慢想:效能兼顾 全局视野 概率预测(快速反应模型,如ChatGPT 4o) 链式推理(慢速思考模型,如OpenAI o1) 性能表现 响应速度快,算力成本低 慢速思考,算力成本高 分析型提示语:要求AI对给定信息进行分析和推 理。 6. 多模态提示语:结合文本、图像等多种形式的 输入。 表1-1-1提示语的本质特征 特征 描述 示例 沟通桥梁 连接人类意图和AI理解 “将以下内容翻译为法语:Hello, world” 上下文提供 者 为AI提供必要的背景信息 “假设你是一位19世纪的历史学家,评论拿 破仑的崛起” 任务定义器 明确指定AI需要完成的任务 “为一篇关于气候变化的文章写一个引言0 码力 | 104 页 | 5.37 MB | 7 月前3清华大学 DeepSeek 从入门到精通
代码注释、文档撰写 结构化生成 文章/故事/诗歌写作 营销文案、广告语生成 社交媒体内容(如推文、帖子) 剧本或对话设计 文本创作 长文本摘要(论文、报告) 文本简化(降低复杂度) 多语言翻译与本地化 摘要与改写 02 01 03 文本生成 自然语言理解与分析 知识推理 知识推理 逻辑问题解答(数学、常识推 理) 因果分析(事件关联性) 语义分析 语义解析 情感分析(评论、反馈) 并非全面更强,仅在其训练目标领域显著优于通用模型 通用场景更灵活,但专项任务需依赖提示语补偿能力 • 例如:GPT-3、GPT-4(OpenAI),BERT(Google),主要用于语言生成、语言理解、文本分类、翻译 等任务。 快思慢想:效能兼顾 全局视野 概率预测(快速反应模型,如ChatGPT 4o) 链式推理(慢速思考模型,如OpenAI o1) 性能表现 响应速度快,算力成本低 慢速思考,算力成本高 分析型提示语:要求AI对给定信息进行分析和推 理。 6. 多模态提示语:结合文本、图像等多种形式的 输入。 表1-1-1提示语的本质特征 特征 描述 示例 沟通桥梁 连接人类意图和AI理解 “将以下内容翻译为法语:Hello, world” 上下文提供 者 为AI提供必要的背景信息 “假设你是一位19世纪的历史学家,评论拿 破仑的崛起” 任务定义器 明确指定AI需要完成的任务 “为一篇关于气候变化的文章写一个引言0 码力 | 103 页 | 5.40 MB | 8 月前3开源中国 2023 大模型(LLM)技术报告
在多个领域都取得了令人瞩目的成就。在自然语言处 理领域,GPT 系列模型在文本生成、问答系统和对话生成 等任务中展现出色的性能。在知识图谱构建、智能助手开发 等方面,LLM 技术也发挥了关键作用。此外,它还在代码 生成、文本摘要、翻译等任务中展现了强大的通用性。 本报告从技术人视角出发,将深入探讨 LLM 技术的背景、 基础设施、应用现状,以及相关的工具和平台。 2 / 32 LLM Tech Map 向量数据库 提供高效的存储和检索能力。通过数据向量化,实现了 在向量数据库中进行高效的相似性计算和查询。 根据向量数据库的的实现方式,可以将向量数据库大致分为两类: 原生的向量数据库专门为存储和检索向量而设计, 所管理的数据是基于对象或数据点的向量表示进行 组织和索引。 包括 等均属于原生向量数据库。 除了选择专业的向量数据库,对传统数据库添加 “向量支持”也是主流方案。比如 等传 统数据库均已支持向量检索。 基础设施:大模型框架及微调 (Fine Tuning) 大模型框架指专门设计用于构建、训练和部署大型机器 学习模型和深度学习模型的软件框架。这些框架提供了 必要的工具和库,使开发者能够更容易地处理大量的数 据、管理巨大的网络参数量,并有效地利用硬件资源。 微调(Fine Tuning)是在大模型框架基础上进行的一个 关键步骤。在模型经过初步的大规模预训练后,微调是 用较小、特定领域的数据集对模型进行后续训练,以使0 码力 | 32 页 | 13.09 MB | 1 年前3国家人工智能产业综合标准化体系建设指南(2024版)
、安 全/治理等 7 个部分组成,如图 2 所示。 5 图 2 人工智能标准体系框架图 6 四、重点方向 (一)基础共性标准 基础共性标准主要包括人工智能术语、参考架构、测试评估、 管理、可持续等标准。 1. 术语标准。规范人工智能相关技术、应用的概念定义, 为其它标准的制定和人工智能研究提供参考,包括人工智能相关 术语定义、范畴、实例等标准。 2. 参考架构标准。规范人工智能相关技术、应用及系统的 方面的测试及评估的指标要求,包括与人工智能相关的服务能力 成熟度评估,人工智能通用性测试指南、评估原则和等级要求, 企业智能化能力框架及测评要求等标准。 4. 管理标准。规范人工智能技术、产品、系统、服务等全 生命周期涉及的人员、组织管理要求和评价,包括面向人工智能 组织的管理要求,人工智能管理体系、分类方法、评级流程等标 准。 5. 可持续标准。规范人工智能影响环境的技术框架、方法 和指标,平衡产业发展与环境保护,包括促进生态可持续的人工 模型表达和格式、模型效果评价等,包括自监督学习、无监督学 习、半监督学习、深度学习、强化学习等标准。 2. 知识图谱标准。规范知识图谱的描述、构建、运维、共 享、管理和应用,包括知识表示与建模、知识获取与存储、知识 融合与可视化、知识计算与管理、知识图谱质量评价与互联互通、 9 知识图谱交付与应用、知识图谱系统架构与性能要求等标准。 3. 大模型标准。规范大模型训练、推理、部署等环节的技 术0 码力 | 13 页 | 701.84 KB | 1 年前3【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502
数转智改 数学计算 语义理解 逻辑推理 语言翻译 文本创作 自动驾驶 具身智能 1 2 4 5 知识问答 代码编程 文本生成 多轮对话 图像生成 视频生成 音频生成 A I 数字人 生物制药 新材料研究 脑机接口 基础科学 能源自由 宇宙探索 生命科学 科学 能力 6 AI Fo r Science 知识管理( 内部知识管理、 外部情报分析、 大数据分析、 工作流知识) 不能处理复杂流程,无法下地干活儿 通用大模型不了解企业内部业务情况、行业情况 58政企、创业者必读 知识管理是大模型更 懂企业的基础 59 解决企业应用,需要打造专业大模型 要解决四个关键基础 以业务大模型为基础, 打造自主工作的数字 员工和AI团队 实现多个Agent、多个 数字化系统、多个组织 之间的协同 知识 管理 融合 工作流 业务大模型 打造 构建 智能体 基于政府企业场景和专业 多模态数据处理和理解 非结构化文档处理和理解 搜索,辅助内部办公和外部客户服务 为业务大模型RAG做准备 内部知识管理 • 把企业内部的碎片化知识, 把专 家头脑中的经验转化为显性知识 管理起来, 如员工邮件、 文档文 件、 聊天记录、 工作记录等 工作流知识管理 1 外部情报分析 • 抓取外部情报, 例如行业报告、 市 场情报等 2 多模态处理 • 用大模型多模态能力把非结构化0 码力 | 76 页 | 5.02 MB | 5 月前3DeepSeek图解10页PDF
脑配置要求降 到最低,普通电脑也能飞速运行。 1.2 DeepSeek 本地部署三个步骤 一共只需要三步,就能做到 DeepSeek 在本地运行并与它对话。 第一步,使用的是 ollama 管理各种不同大模型,ollama 比较直接、干净, 一键下载后安装就行,安装过程基本都是下一步。 不知道去哪里下载的,可以直接在我的公众号后台回复:ollama,下载这个 软件,然后装上,可以拿着手机扫码下图1直达我的公众号: 知识,严禁拿此资料引流、出书、等形式的商业活动 图 1: 我的公众号:郭震 AI 安装后,打开命令窗口,输入 ollama,然后就能看到它的相关指令,一共 10 个左右的命令,如下图2所示,就能帮我们管理好不同大模型: 图 2: Ollama 常用的命令 第二步,命令窗口输入:ollama pull deepseek-r1:1.5b,下载大模型 deepseek- r1 到我们自己的电脑,如下图3所示: 近年来,人工智能(AI)技术的快速发展催生了大型语言模型((Large Language Model, LLM))的兴起。LLM 在自然语言处理(NLP)领域 发挥着越来越重要的作用,广泛应用于智能问答、文本生成、代码编写、机 器翻译等任务。LLM 是一种基于深度学习的人工智能模型,其核心目标是 通过预测下一个单词来理解和生成自然语言。训练 LLM 需要大量的文本数 据,使其能够掌握复杂的语言模式并应用于不同任务。 接下来,咱们先从较为基础的概念开始。0 码力 | 11 页 | 2.64 MB | 7 月前3普通人学AI指南
公司开发的一系列大型语言模型,它设计用于执行多种涉 及语言、推理、分析和编码的任务。 2.1.3 通义千问 通义千问(Qwen)是阿里云开发的一系列预训练的大型语言模型,用于聊天、 生成内容、提取信息、总结、翻译、编码、解决数学问题等多种任务。这些模型 在多种语言数据上进行预训练,包括中文和英文,覆盖广泛的领域。 2.2 图像 Figure 4: AI 图像工具 7 2.2.1 物体擦除 IOPaint 了解 docker 基本用法 Docker 是一个开源的容器化平台,旨在开发、部署和运行应用。它利用容器来 隔离软件,使其在不同环境中都能一致运行。Docker 提供轻量级虚拟化,能快 速部署并且易于管理应用。 Docker 的优势: 1. 快速部署:Docker 容器可以在几秒钟内启动,提高了开发和部署的效率。 2. 一致性:确保应用在开发、测试和生产环境中具有一致的运行环境。 3. 可移植性:容器可以在任何支持0 码力 | 42 页 | 8.39 MB | 7 月前3
共 13 条
- 1
- 2