积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(10)人工智能(10)

语言

全部英语(5)zh(2)fj(1)kor(1)中文(简体)(1)

格式

全部PDF文档 PDF(10)
 
本次搜索耗时 0.020 秒,为您找到相关结果约 10 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • zh
  • fj
  • kor
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    Economical, and Efficient Mixture-of-Experts Language Model DeepSeek-AI research@deepseek.com Abstract We present DeepSeek-V2, a strong Mixture-of-Experts (MoE) language model characterized by economical training Acknowledgments 27 B DeepSeek-V2-Lite: A 16B Model Equipped with MLA and DeepSeekMoE 29 2 B.1 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 B.2 Performance Evaluation Evaluations on Math and Code 33 G Evaluation Formats 34 3 1. Introduction In the past few years, Large Language Models (LLMs) (Anthropic, 2023; Google, 2023; OpenAI, 2022, 2023) have undergone rapid development
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 Trends Artificial Intelligence

    breakthrough large language models (LLMs) that – in effect – found freedom with the November 2022 launch of OpenAI’s ChatGPT with its extremely easy-to-use / speedy user interface. In addition, relatively 260% Annual Growth Over Fifteen Years of… Data to Train AI Models Led To… Note: Only “notable” language models shown (per Epoch AI, includes state of the art improvement on a recognized benchmark, >1K FLOPs are often used to estimate the computational cost of training or running a model. Note: Only language models shown (per Epoch AI, includes state of the art improvement on a recognized benchmark, >1K
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    they could offer more and better insights to clients.
 They started with three model evals: 01 Language translation Measuring the accuracy and quality of translations produced 
 by a model. 02 Summarization candidate why this specific job was recommended to them. Indeed uses the data analysis and natural language capabilities of GPT-4o mini to shape these ‘why’ statements in their emails and messages to jobseekers style, and context. Consistent tone and style For a retailer, that could mean every product description stays true to brand voice; for a law firm, it means properly formatted citations, every time
    0 码力 | 25 页 | 9.48 MB | 5 月前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    Summary 66 Endnotes 68 Prompt Engineering February 2025 6 Introduction When thinking about a large language model input and output, a text prompt (sometimes accompanied by other modalities such as image evaluating a prompt’s writing style and structure in relation to the task. In the context of natural language processing and LLMs, a prompt is an input provided to the model to generate a response or prediction such as text summarization, information extraction, question and answering, text classification, language or code translation, code generation, and code documentation or reasoning. Please feel free to
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    foundations 7 Guardrails 24 Conclusion 32 2 Practical guide to building agents Introduction Large language models are becoming increasingly capable of handling complex, multi-step tasks. Advances in reasoning security reviews. 03 Heavy reliance on unstructured data: Scenarios that involve interpreting natural language, 
 extracting meaning from documents, or interacting with 
 users conversationally, for example and prevent redundant definitions. Broadly speaking, agents need three types of tools: Type Description Examples Data Enable agents to retrieve context and information necessary for executing the workflow
    0 码力 | 34 页 | 7.00 MB | 5 月前
    3
  • pdf文档 OctoML OSS 2019 11 8

    groundwork forimproved multi-language support for expPosing runtime, and |IRs. QQ octoML Unified Object Protocol vm::Object NDArray | Rd | tuplelclosure AST Nodes Cross language suppPort Easy to introduce
    0 码力 | 16 页 | 1.77 MB | 5 月前
    3
  • pdf文档 TVM: Where Are We Going

    tvm::runtime::Module GetFunction(string) -> tvm::runtime::PackedFunc SaveToBinary/LoadFromBinary Runtime Module Interface SubclassesUnified Runtime Benefit mod.export_library("mylib.so") Unified library packaging Free reduce_axis((0, 8)) C = tvm.compute((8, 8), 
 lambda y, x: tvm.sum(A[k, y] * B[k], axis=k)) HW Interface Specification by Tensor Expression TensorizationVTA: Open & Flexible Deep Learning Accelerator for Flexible Deep Learning Acceleration. Moreau et al. IEEE Micro 2019. VTA Hardware/Software Interface (ISA) VTA MicroArchitecture VTA Simulator} compiler, driver, hardware design full stack open
    0 码力 | 31 页 | 22.64 MB | 5 月前
    3
  • pdf文档 Dynamic Model in TVM

    2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. VM bytecode Instruction Description Move Moves data from one register to another. Ret Returns the object in register result to caller’s
    0 码力 | 24 页 | 417.46 KB | 5 月前
    3
  • pdf文档 TVM@Alibaba AI Labs

    kernel, strides, padding, dilation, layout, out_dtype): #Describe algorithm with tensor expression language'; #Return the out operation w How to compute. @autotvm.register_ topi_schedule(schedule_conv2d_nchw,pvr
    0 码力 | 12 页 | 1.94 MB | 5 月前
    3
  • pdf文档 DeepSeek图解10页PDF

    零基础必知 为了更深入理解 DeepSeek-R1,首先需要掌握 LLM 的基础知识,包括其工 作原理、架构、训练方法。 近年来,人工智能(AI)技术的快速发展催生了大型语言模型((Large Language Model, LLM))的兴起。LLM 在自然语言处理(NLP)领域 发挥着越来越重要的作用,广泛应用于智能问答、文本生成、代码编写、机 器翻译等任务。LLM 是一种基于深度学习的人工智能模型,其核心目标是
    0 码力 | 11 页 | 2.64 MB | 7 月前
    3
共 10 条
  • 1
前往
页
相关搜索词
DeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModelTrendsArtificialIntelligenceOpenAIAIintheEnterpriseGooglePromptEngineeringv7practicalguidetobuildingagentsOctoMLOSS201911TVMWhereAreWeGoingDynamicAlibabaLabs图解10PDF
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩