积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(12)人工智能(12)

语言

全部英语(6)中文(简体)(3)zh(2)中文(简体)(1)

格式

全部PDF文档 PDF(12)
 
本次搜索耗时 0.126 秒,为您找到相关结果约 12 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • 中文(简体)
  • zh
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Trends Artificial Intelligence

    / Testing AI Tools % of Survey Responses 0% 25% 50% 75% Plan on Start Testing Within 1-2 Years Fully Implemented Plan on Start Testing Within 12 Months Running Initial Tests / Experiments Note: AI Adoption = Rising Priority… Bank of America – Erica Virtual Assistant (6/18) Note: We assume a start at zero users from Erica’s launch in 6/18. Pilot users excluded. Source: Bank of America (2/21, 4/24 techniques with the remainder relative to a random baseline or holdout control.’ We indicate 2020 as the start year for JP Morgan’s AI Modernization (2020 Letter to Shareholders: ‘We already extensively use AI
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    prompting guides2,3 with simple and effective prompting examples. When prompt engineering, you will start by choosing a model. Prompts might need to be optimized for your specific model, regardless of whether become more stylistically or textually succinct in the output it creates, it just causes the LLM to stop predicting more tokens once the limit is reached. If your needs require a short output length, you’ll of 20. Finally, if your task always has a single correct answer (e.g., answering a math problem), start with a temperature of 0. NOTE: With more freedom (higher temperature, top-K, top-P, and output tokens)
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 Dynamic Model in TVM

    time. Define a tensor type: Tensor<(Any, 3, 32, 32), fp32> Define type relation: arange: fn(start:fp32, stop:fp32, step:fp32) -> Tensor<(Any), fp32>© 2019, Amazon Web Services, Inc. or its Affiliates function example @script def _arange_shape_func(start, stop, step): out = output_tensor((1,), "int64") out[0] = int64(ceil_div((int64(stop[0]) - int64(start[0])), int64(step[0]))) return out @_reg
    0 码力 | 24 页 | 417.46 KB | 5 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    In 9th International Conference on Learning Representations, ICLR 2021. OpenReview.net, 2021. URL https://openreview.net/forum?id=qrwe7XHTmYb. H. Li, Y. Zhang, F. Koto, Y. Yang, H. Zhao, Y. Gong, N. Duan In 5th International Conference on Learning Representations, ICLR 2017. OpenReview.net, 2017. URL https: //openreview.net/forum?id=B1ckMDqlg. J. Su, M. Ahmed, Y. Lu, S. Pan, W. Bo, and Y. Liu. Roformer: """ Given a positive integer n, return the count of the numbers of n-digit positive integers that start or end with 1. """ Table 26 | An example of HumanEval. 44 PROMPT Problem: Find the domain of the
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 TVM工具组

    直接支持 caffe 让大家更方便尝试 caffe 资源。绝赞招聘中 当前进度 无 caffe 依赖 from_caffe 直接导入 caffe 模型文件,不需要预先安装 caffe 。 net 已测试网络:alexnet / densenet121 / inception v1 / inception v3 / inception v4 / mobilenet v1 / mobilenet 命令行工具 将 caffe 模型转换的功能,通过一组命令行工具提供,命令行工具支持 windows / linux 平台。 支持更多 caffe op / net 随着客户需求和社区发展,提供更多的 caffe 分支变种的 op / net 支持。绝赞招聘中 THANKS
    0 码力 | 6 页 | 326.80 KB | 5 月前
    3
  • pdf文档 Facebook -- TVM AWS Meetup Talk

    architecture - Autoregressive sampling net running at faster than real-time - Compute split between GRU units and FC layers - 24kHz sampling frequency requires 40us sampling net runtime - First PyTorch model model used a 3,400us sampling net runtime Image from LPCNetExit, Pursued By A Bear - 3400us (baseline), 40us (target) - 85x speedup - Uh ohEnter, TVM and model co-design - PyTorch operator overhead
    0 码力 | 11 页 | 3.08 MB | 5 月前
    3
  • pdf文档 普通人学AI指南

    目录中运行:docker build -t . 常用命令: 1. 列出正在运行的容器:docker ps 2. 列出所有容器:docker ps -a 3. 停止一个容器:docker stop 4. 删除一个容器:docker rm 20 4.2.2 下载 docker docker 下载地址: https://www
    0 码力 | 42 页 | 8.39 MB | 7 月前
    3
  • pdf文档 开源中国 2023 大模型(LLM)技术报告

    一番,每年 训练 AI 模型所需算力增长幅度高达 10 倍 (图源:https://openai.com/research/ai-and-compute) 31 / 32 oschina.net gitee.com 公众号 视频号 关注我们,开源开发者圈一网打尽 32 / 32
    0 码力 | 32 页 | 13.09 MB | 1 年前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    to work 3 Executive summary 5 Seven lessons for enterprise AI adoption Start with evals 6 Embed AI into your products 9 Start now and invest early 11 Customize and fine-tune your models 13 Get AI and models. 4 AI in the EnterpriseExecutive summary Seven lessons for enterprise AI adoption 01 Start with evals Use a systematic evaluation process to measure how 
 models perform against your use cases Embed AI in 
 your products Create new customer experiences and more 
 relevant interactions. 03 Start now and 
 invest early The sooner you get going, the more the value compounds. 04 Customize and
    0 码力 | 25 页 | 9.48 MB | 5 月前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    effectively. After reading this guide, you’ll have the foundational knowledge you need to confidently start building your first agent. 3 A practical guide to building agents What is an agent? While conventional a handoff is a type of tool, or function. If an agent calls a handoff function, we immediately start execution on that new agent that was handed off to while also transferring the latest conversation involve complex decisions, unstructured data, or brittle rule-based systems. To build reliable agents, start with strong foundations: pair capable models with well-defined tools and clear, structured instructions
    0 码力 | 34 页 | 7.00 MB | 5 月前
    3
共 12 条
  • 1
  • 2
前往
页
相关搜索词
TrendsArtificialIntelligenceGooglePromptEngineeringv7DynamicModelinTVMDeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguage工具FacebookAWSMeetupTalk普通通人普通人AI指南开源中国2023模型LLM技术报告OpenAItheEnterprisepracticalguidetobuildingagents
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩