积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(19)人工智能(19)

语言

全部英语(6)zh(5)中文(简体)(2)[zh](1)fj(1)日语(1)kor(1)ro(1)中文(简体)(1)

格式

全部PDF文档 PDF(19)
 
本次搜索耗时 0.032 秒,为您找到相关结果约 19 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • zh
  • 中文(简体)
  • [zh]
  • fj
  • 日语
  • kor
  • ro
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Trends Artificial Intelligence

    datapoints turned into this beast. As soon as we updated one chart, we often had to update another – a data game of whack-a-mole… a pattern that shows no sign of stopping…and will grow more complex as competition related to the artificial intelligence technology evolution is indeed unprecedented, as supported by the data. This document is filled with user, usage and revenue charts that go up-and-to-the-right… often supported Threats = Rising Competition + Open-Source Momentum + China’s Rise • AI & Physical World Ramps = Fast + Data-Driven • Global Internet User Ramps Powered by AI from Get-Go = Growth We Have Not Seen Likes of
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    error-prone, 
 for example performing vendor security reviews. 03 Heavy reliance on unstructured data: Scenarios that involve interpreting natural language, 
 extracting meaning from documents, or interacting redundant definitions. Broadly speaking, agents need three types of tools: Type Description Examples Data Enable agents to retrieve context and information necessary for executing the workflow. Query transaction time, effortlessly synthesizing the results into a cohesive interaction. This ensures a smooth, unified user experience, with specialized capabilities always available on-demand. This pattern is ideal
    0 码力 | 34 页 | 7.00 MB | 5 月前
    3
  • pdf文档 TVM: Where Are We Going

    Cloud FPGA ASIC Optimization AutoTVM Device FleetExisting Deep Learning Frameworks High-level data flow graph Hardware Primitive Tensor operators such as Conv2D eg. cuDNN Offload to heavily optimized intensiveMachine Learning based Program Optimizer TVM: Learning-based Learning System High-level data flow graph and optimizations Directly generate optimized program for new operator workloads and ry Runtime Module Interface SubclassesUnified Runtime Benefit mod.export_library("mylib.so") Unified library packaging Free API (Py/Java/Go) lib = tvm.module.load("mylib.so") func = lib["npufunction0"]
    0 码力 | 31 页 | 22.64 MB | 5 月前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    surface, while a compressive force was applied at a constant loading rate of 10 mm-min until the real-time force curve on the monitor screen fast drop indicating failure occurred. ln addition, the left surface, while a compressive force was applied at a constant loading rate of 10 mm/min until the real-time force curve on the monitor screen fast drop indicating failure occurred. 改写降重指令 指令:我想让你充当科研写 Prompts(指令) 描述 Can you load and preview the data? 加载,预览一下数据 Can you list the top 10 key points? 最重要的十个要点 What are the trends shown in this data? 找趋势 Can you describe the data? 描述数据 Show me the top trends in a
    0 码力 | 85 页 | 8.31 MB | 7 月前
    3
  • pdf文档 OctoML OSS 2019 11 8

    truncating division. e Unified Object and Node system for TVM runtime o Lays groundwork forimproved multi-language support for expPosing runtime, and |IRs. QQ octoML Unified Object Protocol vm::Object implementation httpsJigithub,comlapachelincubator-tvmipull4274 remumn dming data AutoTYM 二 QQ octoML Coming Soon to HTVM (Self-Hosted Models) Host
    0 码力 | 16 页 | 1.77 MB | 5 月前
    3
  • pdf文档 XDNN TVM - Nov 2019

    VGG16 ResNet-50 GoogleNet-V3 Aristotle on 7020 FPGA Iphone8plus Kirin 970 CPU MEM CONTROLLER BUS Data Mover IMG WR SCHEDULER WEIGHTS WR SCHEDULER SMART MEM FABRIC IMG RD SCHEDULER WEIGHTS RD Graph Frontend Deep Learning Frameworks https://github.com/xilinx© Copyright 2018 Xilinx TVM as Unified ML Front End >> 6 Relay (and NNVM) Graph Parser XIR Compiler Quantizer Partitioner @relay node in TVM graph { "nodes": [ { "op": "null", "name": "data", "inputs": [] }, { "op": "tvm_op", "name": "xdnn0", "attrs": { "flatten_data": "0", "func_name": “accel_fused", "num_inputs": "1", "num_outputs":
    0 码力 | 16 页 | 3.35 MB | 5 月前
    3
  • pdf文档 Facebook -- TVM AWS Meetup Talk

    Synthesis - WaveRNN-style model architecture - Autoregressive sampling net running at faster than real-time - Compute split between GRU units and FC layers - 24kHz sampling frequency requires 40us sampling hand-written, highly optimized baselines (https://github.com/mozilla/LPCNet) by ~40% - Bonus: Real-time on mobile CPUs for free 6 TVM specifics X78Structured and Unstructured Sparsity - Lots of
    0 码力 | 11 页 | 3.08 MB | 5 月前
    3
  • pdf文档 PAI & TVM Meetup - Shanghai 20191116

    。Work at the scheduling level: the less the better 。 The requirement of familiarity with WMMA API “Unified matmul schedule for GPU 。 Maintainability & Common Optimization Sharing 。 Search across the entire memory load latency 。 storage align to reduce bank conflicts of shared memory 。 Virtual threads for data reuse (on going) Performance on V100 (FP16) 计算平台事业部 COMPUTING PLATFORM 512, 16, 512 512, 32, 512
    0 码力 | 26 页 | 5.82 MB | 5 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    Experimental Setups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1.1 Data Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1.2 Hyper-Parameters MLA and MHA . . . . . . . . . . . . . . . . . . . . . . . . . 31 E Discussion About Pre-Training Data Debiasing 32 F Additional Evaluations on Math and Code 33 G Evaluation Formats 34 3 1. Introduction previous release) (DeepSeek-AI, 2024), this corpus features an extended amount of data, especially Chinese data, and higher data quality. We first pretrain DeepSeek-V2 on the full pre-training corpus. Then
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    employees can focus on 
 the things only people can do. And because AI can process huge amounts of data from many sources, it can create customer experiences that feel more human because they’re more relevant need to explain to the candidate why this specific job was recommended to them. Indeed uses the data analysis and natural language capabilities of GPT-4o mini to shape these ‘why’ statements in their function. With thousands of suppliers, Lowe’s often has to work with incomplete or inconsistent product data. 13 AI in the EnterpriseThe key is in accurate product descriptions and tagging. But it also requires
    0 码力 | 25 页 | 9.48 MB | 5 月前
    3
共 19 条
  • 1
  • 2
前往
页
相关搜索词
TrendsArtificialIntelligenceOpenAIpracticalguidetobuildingagentsTVMWhereAreWeGoing清华大学DeepSeekDeepResearch科研OctoMLOSS201911XDNNNovFacebookAWSMeetupTalkPAIShanghai20191116V2StrongEconomicalandEfficientMixtureofExpertsLanguageModelAIintheEnterprise
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩