积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(13)人工智能(13)

语言

全部英语(6)zh(4)[zh](1)日语(1)kor(1)

格式

全部PDF文档 PDF(13)
 
本次搜索耗时 0.023 秒,为您找到相关结果约 13 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • zh
  • [zh]
  • 日语
  • kor
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Trends Artificial Intelligence

    OpenAI’s ChatGPT with its extremely easy-to-use / speedy user interface. In addition, relatively new AI company founders have been especially aggressive about innovation / product releases / investments to adapt to this evolving journey as knowledge – and its distribution – get leveled up rapidly in new ways. Special thanks to Grant Watson and Keeyan Sanjasaz and BOND colleagues who helped steer ideas cost-per-token declines, open-source proliferation and chip performance improvements are making new tech advances increasingly more powerful, accessible, and economically viable. OpenAI’s ChatGPT –
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    insightful responses. Step-back prompting encourages LLMs to think critically and apply their knowledge in new and creative ways. It changes the final prompt doing the task by utilizing more knowledge in the LLM’s gemini-pro Temperature 1 Token Limit 1024 Top-K 40 Top-P 0.8 Prompt Write a one paragraph storyline for a new level of a first- person shooter video game that is challenging and engaging. Output The level begins underwater exploration skills to survive. Take one of the themes and write a one paragraph storyline for a new level of a first-person shooter video game that is challenging and engaging. Output In the heart of
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 OctoML OSS 2019 11 8

    OctoML is a new company building DL deployment solutions using the Apache (incubating) TVM project. A goal is to nurture the TVM community and contribute new infrastructure and features. octom|.ai @octoml folks) o_ Improved NLP support, with focus on transformers QQ octoML Core Infrastructure Refactors ee New Integer Analysis Infrastructure o_ Supports the ability to handle nested division and modulus o_ Improves vm::Object NDArray | Rd | tuplelclosure AST Nodes Cross language suppPort Easy to introduce new runtime objects (trees, graphs) Direct access from other languages QQ octoML HTVM Overview *。 Plug
    0 码力 | 16 页 | 1.77 MB | 5 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    communication overheads and ensure load balance. By combining these two techniques, DeepSeek-V2 features strong performance (Figure 1(a)), economical training costs, and efficient inference throughput Compared with the corpus used in DeepSeek 67B (our previous release) (DeepSeek-AI, 2024), this corpus features an extended amount of data, especially Chinese data, and higher data quality. We first pretrain IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 7432–7439. AAAI Press, 2020. doi: 10.1609/aaai.v34i05.6239
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    AI in the Enterprise Lessons from seven frontier companiesContents A new way to work 3 Executive summary 5 Seven lessons for enterprise AI adoption Start with evals 6 Embed AI into your products developers 18 Set bold automation goals 21 Conclusion 22 More resources 24 2 AI in the EnterpriseA new way 
 to work As an AI research and deployment company, OpenAI prioritizes partnering with global software or deploying cloud apps. The most successful companies are often those who treat it as a new paradigm. This leads to an experimental 
 mindset and an iterative approach that gets to value faster
    0 码力 | 25 页 | 9.48 MB | 5 月前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    handling complex, multi-step tasks. Advances in reasoning, multimodality, and tool use have unlocked a new category of LLM-powered systems known as agents. This guide is designed for product and engineering or search the web. Action Enable agents to interact with systems to take actions such as adding new information to databases, updating records, or sending messages. Send emails and texts, update incrementally adding tools, keeping complexity manageable and simplifying evaluation and maintenance. Each new tool expands its capabilities without prematurely forcing you to orchestrate multiple agents. Tools
    0 码力 | 34 页 | 7.00 MB | 5 月前
    3
  • pdf文档 TVM: Where Are We Going

    optimized DNN operator library FrameworksLimitations of Existing Approach cuDNN Frameworks New operator introduced by operator fusion optimization potential benefit: 1.5x speedup Engineering Learning System High-level data flow graph and optimizations Directly generate optimized program for new operator workloads and hardware Hardware FrameworksWhy Automation is the Future Clear winner for Future Hardware Current TVM Stack New NPU Runtime TSIM Driver TSIM Binary New Hardware Design in Verilog VerilatorToward Unified IR InfraOverview of New IR Infra Single unified module/pass, type
    0 码力 | 31 页 | 22.64 MB | 5 月前
    3
  • pdf文档 TVM@AliOS

    for different terminals. 。 To help traditional car firms AliOS互联网汽车 共创智能网联汽车 共建未来出行生态 embrace new "connected' era by acting as the IT “chassis' of ROEWE负风 auto industry /NiiOS ! 驱动万物智能 TVM Timeline w,v4.w) V0.w vadd(v30.w,v31,.w) Vvmem( rO++#1) = V0.new } r@ = #0; jumpr r31 vrmpy(v2.ub,v9.ub) vSsptLat(r2) = V1 Vmem( rO++#1) = V3.new )} nop r2 = memw(rl++#4) } :endLoop0 Vv2.uw = vrmpy(v2 vo.ub) v30 = vsptLat(r2) Vvmem( rO++#1) = V2.new v1.uw = vrmpy(v1.ub,vo.ub) Vmem( rO++#1) = V1.new Vv31.uw = vrmpy(v30.ub,vo.ub) Vmem( rO++#1) = V31.new 上 r0 = #0; jumpr r31 } PART FOUR Alios
    0 码力 | 27 页 | 4.86 MB | 5 月前
    3
  • pdf文档 Bring Your Own Codegen to TVM

    YOLO model, but... ResNet-50 Dense Non Maximum Suppression Non Maximum Suppression (NMS) is too new to be supported by your chip But NMS is supported by TVM!© 2019, Amazon Web Services, Inc. or its new_call = relay.Call(call.op, params, call.attrs) if curr_last: . new_call = subgraph_end(new_call, self.target) return new_call© 2019
    0 码力 | 19 页 | 504.69 KB | 5 月前
    3
  • pdf文档 TVM Meetup: Quantization

    Amazon Web Services, Inc. or its Affiliates. All rights reserved. Quantized Operators in Framework • New operators like TF quantized_conv2d • Underlying calculations are different than FP32 conv2d • Sometimes rights reserved. How to Support Framework Quantized Operators? Option 1 – Completely add new ops from scratch • New Relay passes and TVM schedules required • AlterOpLayout, Graph Fusion etc require work/operator TVM infrastructure. Option 2 – Lower to a sequence of existing Relay operators • We introduced a new Relay dialect – QNN to encapsulate this work • Complete reuse of Relay pass infrastructure • Possible
    0 码力 | 19 页 | 489.50 KB | 5 月前
    3
共 13 条
  • 1
  • 2
前往
页
相关搜索词
TrendsArtificialIntelligenceGooglePromptEngineeringv7OctoMLOSS201911DeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModelOpenAIAIintheEnterprisepracticalguidetobuildingagentsTVMWhereAreWeGoingAliOSBringYourOwnCodegenMeetupQuantization
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩