积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(6)人工智能(6)

语言

全部英语(5)kor(1)

格式

全部PDF文档 PDF(6)
 
本次搜索耗时 0.025 秒,为您找到相关结果约 6 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • kor
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Google 《Prompt Engineering v7》

    LLM to predict the right sequence of tokens. Prompt engineering is the process of designing high-quality prompts that guide LLMs to produce accurate outputs. This process involves tinkering to find the need for few-shot prompting depends on a few factors, including the complexity of the task, the quality of the examples, and the capabilities of the generative AI (gen AI) model you are using. As a general examples that are relevant to the task you want to perform. The examples should be diverse, of high quality, and well written. One small mistake can confuse the model and will result in undesired output.
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    agents 
 (see Orchestration). 10 A practical guide to building agents Configuring instructions High-quality instructions are essential for any LLM-powered app, but especially critical for agents. Clear instructions financial impact. Use these risk ratings to trigger automated actions, such as pausing for guardrail checks before executing high-risk functions or escalating to a human if needed. 26 A practical guide to Output validation Ensures responses align with brand values via prompt engineering and content checks, preventing outputs that 
 could harm your brand’s integrity. Building guardrails Set up guardrails
    0 码力 | 34 页 | 7.00 MB | 5 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    3%, and boosts the maximum generation throughput to 5.76 times. We pretrain DeepSeek-V2 on a high-quality and multi-source corpus consisting of 8.1T tokens, and further perform Supervised Fine-Tuning (SFT) training costs, and efficient inference throughput (Figure 1(b)), simultaneously. We construct a high-quality and multi-source pre-training corpus consisting of 8.1T tokens. Compared with the corpus used in 2024), this corpus features an extended amount of data, especially Chinese data, and higher data quality. We first pretrain DeepSeek-V2 on the full pre-training corpus. Then, we collect 1.5M conversational
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    measurable improvements on three fronts: 01 Workforce performance Helping people deliver higher-quality outputs in shorter 
 time frames. 02 Automating routine operations Freeing people from repetitive examples. 5 AI in the EnterpriseLesson 1 Start with evals How Morgan Stanley iterated to ensure quality and safety As a global leader in financial services, Morgan Stanley is a relationship business. clients.
 They started with three model evals: 01 Language translation Measuring the accuracy and quality of translations produced 
 by a model. 02 Summarization Evaluating how a model condenses information
    0 码力 | 25 页 | 9.48 MB | 5 月前
    3
  • pdf文档 Trends Artificial Intelligence

    Employed USA Adults AI User + Usage + CapEx Growth = Unprecedented 0% 25% 50% 75% 100% Improving the Quality of Their Work Allowing Them to Do Things More Quickly Extremely / Very Somewhat Not Too / Not general-purpose models may be accelerating commoditization and driving diminishing returns, as output quality converges across players and differentiation becomes harder to sustain. At the same time, the cost general-purpose models may be accelerating commoditization and driving diminishing returns, as output quality converges across players and differentiation becomes harder to sustain. At the same time, the
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • pdf文档 OctoML OSS 2019 11 8

    contributors at UW, AWS, and OctoML. e Initial implementation is quickly moving towards production quality. o _VM compiler VM runtime VM serialization Dynamic Shape Support Dynamic Shape Allocation o
    0 码力 | 16 页 | 1.77 MB | 5 月前
    3
共 6 条
  • 1
前往
页
相关搜索词
GooglePromptEngineeringv7OpenAIpracticalguidetobuildingagentsDeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModelAIintheEnterpriseTrendsArtificialIntelligenceOctoMLOSS201911
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩