积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(14)人工智能(14)

语言

全部英语(7)zh(4)日语(1)kor(1)中文(简体)(1)

格式

全部PDF文档 PDF(14)
 
本次搜索耗时 0.021 秒,为您找到相关结果约 14 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • zh
  • 日语
  • kor
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Trends Artificial Intelligence

    effect – found freedom with the November 2022 launch of OpenAI’s ChatGPT with its extremely easy-to-use / speedy user interface. In addition, relatively new AI company founders have been especially aggressive powerhouses charging ahead. In this document, we share data / research / benchmarks from third parties that use methodologies they deem to be effective – we are thankful for the hard work so many are doing to illustrate art improvement on a recognized benchmark, >1K citations, historically relevant, with significant use). Source: Epoch AI (5/25) Training Dataset Size (Number of Words) for Key AI Models – 1950-2025,
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    54 Design with simplicity 55 Be specific about the output 56 Use Instructions over Constraints 56 Control the max token length 58 Use variables in prompts 58 Experiment with input formats and writing effective prompt can be complicated. Many aspects of your prompt affect its efficacy: the model you use, the model’s training data, the model configurations, your word-choice, style and tone, structure choosing a model. Prompts might need to be optimized for your specific model, regardless of whether you use Gemini language models in Vertex AI, GPT, Claude, or an open source model like Gemma or LLaMA. Besides
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    increasingly capable of handling complex, multi-step tasks. Advances in reasoning, multimodality, and tool use have unlocked a new category of LLM-powered systems known as agents. This guide is designed for product deployments into practical and actionable best practices. It includes frameworks for identifying promising use cases, clear patterns for designing agent logic and orchestration, and best practices to ensure your reservation, committing a code change, 
 or generating a report. Applications that integrate LLMs but don’t use them to control workflow execution—think simple chatbots, single-turn LLMs, or sentiment classifiers—are
    0 码力 | 34 页 | 7.00 MB | 5 月前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    products into companies to address their most pressing use cases. We use iterative deployment to learn quickly from customer use cases and use that information to accelerate product improvements. Seven lessons for enterprise AI adoption 01 Start with evals Use a systematic evaluation process to measure how 
 models perform against your use cases. 02 Embed AI in 
 your products Create new customer more the value compounds. 04 Customize and 
 tune your models Tuning AI to the specifics of your use cases can dramatically increase value. 05 Get AI in the hands 
 of experts The people closest to
    0 码力 | 25 页 | 9.48 MB | 5 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    1.3. Decoupled Rotary Position Embedding Following DeepSeek 67B (DeepSeek-AI, 2024), we intend to use the Rotary Position Embed- ding (RoPE) (Su et al., 2024) for DeepSeek-V2. However, RoPE is incompatible balance (LDevBal), and communication balance (LCommBal), respectively. Expert-Level Balance Loss. We use an expert-level balance loss (Fedus et al., 2021; Lepikhin et al., 2021) to mitigate the risk of routing maximum learning rate is set to 2.4 × 10−4, and the gradient clipping norm is set to 1.0. We also use a batch size scheduling strategy, where the batch size is gradually increased from 2304 to 9216 in
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 亿联TVM部署

    Intel/arm CPU, Nividia/arm GPU, VTA…5 �������������� 1. Get a .log file from the autotvm on Ubuntu 2. Use the .log from step1 on Windows to generate the .dll for deployment 3. For application on 32bits, no options if options else [ “-shared”, “-fPIC”, “-m32”] b. python tensorflow_blur.py to get the .log c. Use the .log, with target=“llvm –mcpu=i686 –mtriple=i686-linux-gnu” then TVM_NDK_CC=“clang –m32” python
    0 码力 | 6 页 | 1.96 MB | 5 月前
    3
  • pdf文档 OctoML OSS 2019 11 8

    Runtime send program 较 ,we 人 Interace Optimize TVM operators on microcontrollers by making use of AutoTVM improve alLLoc_storage(40,64,f32) ; Tet outl = attoc_tensor(s,(19,),f32); coalescing, memory re-use for invoke_tvn_op(add,(tl,t2),(outl,))3 Out1l loops, and offloading dynamic } allocation
    0 码力 | 16 页 | 1.77 MB | 5 月前
    3
  • pdf文档 TVM: Where Are We Going

    print(mod[”te_add_one”].args) Use hybrid script as an alternative text format Directly write pass, manipulate IR structures Accelerate innovation, 
 e.g. use (GA/RL/BayesOpt/your favorite ML method)
    0 码力 | 31 页 | 22.64 MB | 5 月前
    3
  • pdf文档 Dynamic Model in TVM

    its Affiliates. All rights reserved. Support dynamic model in TVM ● Support Any-dim in typing ● Use shape function to compute the type at runtime ● Virtual machine as a new runtime for Relay ● Dynamic const_range(len(inputs)): out[i] += inputs[j][i] return out Shape function example Use hybrid script to write shape function Input shape tensors Type checking Data independent© 2019,
    0 码力 | 24 页 | 417.46 KB | 5 月前
    3
  • pdf文档 Facebook -- TVM AWS Meetup Talk

    Reduce precision with int8/float16 - very helpful to maintain model in core-private L1 dcaches - Use rational approximations for transcendentals (exp, tanh, erf, etc) - very general technique, allows
    0 码力 | 11 页 | 3.08 MB | 5 月前
    3
共 14 条
  • 1
  • 2
前往
页
相关搜索词
TrendsArtificialIntelligenceGooglePromptEngineeringv7OpenAIpracticalguidetobuildingagentsAIintheEnterpriseDeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModel亿联TVM部署OctoMLOSS201911WhereAreWeGoingDynamicFacebookAWSMeetupTalk
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩