Hello 算法 1.0.0b4 C#版
努力提升哈希算法的性能,另一 部分研究人员和黑客则致力于寻找哈希算法的安全性问题。直至目前: ‧ MD5 和 SHA‑1 已多次被成功攻击,因此它们被各类安全应用弃用。 ‧ SHA‑2 系列中的 SHA‑256 是最安全的哈希算法之一,仍未出现成功的攻击案例,因此常被用在各类安 全应用与协议中。 ‧ SHA‑3 相较 SHA‑2 的实现开销更低、计算效率更高,但目前使用覆盖度不如 SHA‑2 度 128 bits 160 bits 256 / 512 bits 224/256/384/512 bits 哈希冲 突 较多 较多 很少 很少 安全等 级 低,已被成功攻击 低,已被成功 攻击 高 高 应用 已被弃用,仍用于数据完整 性检查 已被弃用 加密货币交易验证、数字 签名等 可用于替代 SHA‑2 6.3.4. 数据结构的哈希值 我们知道,哈希表的 key 细心的你可能发现在不同控制台中运行程序时,输出的哈希值是不同的。这是因为 Python 解释器在每次启 动时,都会为字符串哈希函数加入一个随机的盐(Salt)值。这种做法可以有效防止 HashDoS 攻击,提升 哈希算法的安全性。 6.4. 小结 ‧ 输入 key ,哈希表能够在 ?(1) 时间内查询到 value ,效率非常高。 ‧ 常见的哈希表操作包括查询、添加键值对、删除键值对和遍历哈希表等。0 码力 | 341 页 | 27.39 MB | 1 年前3Hello 算法 1.0.0b5 C#版
部分研究人员和黑客则致力于寻找哈希算法的安全性问题。表 6‑2 展示了在实际应用中常见的哈希算法。 ‧ MD5 和 SHA‑1 已多次被成功攻击,因此它们被各类安全应用弃用。 ‧ SHA‑2 系列中的 SHA‑256 是最安全的哈希算法之一,仍未出现成功的攻击案例,因此常被用在各类安 全应用与协议中。 ‧ SHA‑3 相较 SHA‑2 的实现开销更低、计算效率更高,但目前使用覆盖度不如 SHA‑2 度 128 bits 160 bits 256 / 512 bits 224/256/384/512 bits 哈希冲 突 较多 较多 很少 很少 安全等 级 低,已被成功攻击 低,已被成功 攻击 高 高 应用 已被弃用,仍用于数据完整 性检查 已被弃用 加密货币交易验证、数字 签名等 可用于替代 SHA‑2 6.3.4 数据结构的哈希值 我们知道,哈希表的 key 细心的你可能发现在不同控制台中运行程序时,输出的哈希值是不同的。这是因为 Python 解释器在每次启 动时,都会为字符串哈希函数加入一个随机的盐(Salt)值。这种做法可以有效防止 HashDoS 攻击,提升 哈希算法的安全性。 6.4 小结 1. 重点回顾 ‧ 输入 key ,哈希表能够在 ?(1) 时间内查询到 value ,效率非常高。 ‧ 常见的哈希表操作包括查询、添加键值对、删除键值对和遍历哈希表等。0 码力 | 376 页 | 30.69 MB | 1 年前3Hello 算法 1.1.0 C#版
部分研究人员和黑客则致力于寻找哈希算法的安全性问题。表 6‑2 展示了在实际应用中常见的哈希算法。 ‧ MD5 和 SHA‑1 已多次被成功攻击,因此它们被各类安全应用弃用。 ‧ SHA‑2 系列中的 SHA‑256 是最安全的哈希算法之一,仍未出现成功的攻击案例,因此常用在各类安全 应用与协议中。 ‧ SHA‑3 相较 SHA‑2 的实现开销更低、计算效率更高,但目前使用覆盖度不如 SHA‑2 2008 输出长 度 128 bit 160 bit 256/512 bit 224/256/384/512 bit 哈希冲 突 较多 较多 很少 很少 安全等 级 低,已被成功攻击 低,已被成功攻 击 高 高 应用 已被弃用,仍用于数据完整性检 查 已被弃用 加密货币交易验证、数字签名 等 可用于替代 SHA‑2 6.3.4 数据结构的哈希值 我们知道,哈希表的 细心的你可能发现在不同控制台中运行程序时,输出的哈希值是不同的。这是因为 Python 解释器在每次启 动时,都会为字符串哈希函数加入一个随机的盐(salt)值。这种做法可以有效防止 HashDoS 攻击,提升哈 希算法的安全性。 6.4 小结 1. 重点回顾 ‧ 输入 key ,哈希表能够在 ?(1) 时间内查询到 value ,效率非常高。 ‧ 常见的哈希表操作包括查询、添加键值对、删除键值对和遍历哈希表等。0 码力 | 378 页 | 18.47 MB | 1 年前3Hello 算法 1.2.0 简体中文 C# 版
部分研究人员和黑客则致力于寻找哈希算法的安全性问题。表 6‑2 展示了在实际应用中常见的哈希算法。 ‧ MD5 和 SHA‑1 已多次被成功攻击,因此它们被各类安全应用弃用。 ‧ SHA‑2 系列中的 SHA‑256 是最安全的哈希算法之一,仍未出现成功的攻击案例,因此常用在各类安全 应用与协议中。 ‧ SHA‑3 相较 SHA‑2 的实现开销更低、计算效率更高,但目前使用覆盖度不如 SHA‑2 2008 输出长 度 128 bit 160 bit 256/512 bit 224/256/384/512 bit 哈希冲 突 较多 较多 很少 很少 安全等 级 低,已被成功攻击 低,已被成功攻 击 高 高 应用 已被弃用,仍用于数据完整性检 查 已被弃用 加密货币交易验证、数字签名 等 可用于替代 SHA‑2 6.3.4 数据结构的哈希值 我们知道,哈希表的 细心的你可能发现在不同控制台中运行程序时,输出的哈希值是不同的。这是因为 Python 解释器在每次启 动时,都会为字符串哈希函数加入一个随机的盐(salt)值。这种做法可以有效防止 HashDoS 攻击,提升哈 希算法的安全性。 6.4 小结 1. 重点回顾 ‧ 输入 key ,哈希表能够在 ?(1) 时间内查询到 value ,效率非常高。 ‧ 常见的哈希表操作包括查询、添加键值对、删除键值对和遍历哈希表等。0 码力 | 379 页 | 18.48 MB | 10 月前3Hello 算法 1.0.0 C#版
部分研究人员和黑客则致力于寻找哈希算法的安全性问题。表 6‑2 展示了在实际应用中常见的哈希算法。 ‧ MD5 和 SHA‑1 已多次被成功攻击,因此它们被各类安全应用弃用。 ‧ SHA‑2 系列中的 SHA‑256 是最安全的哈希算法之一,仍未出现成功的攻击案例,因此常用在各类安全 应用与协议中。 ‧ SHA‑3 相较 SHA‑2 的实现开销更低、计算效率更高,但目前使用覆盖度不如 SHA‑2 2008 输出长 度 128 bit 160 bit 256/512 bit 224/256/384/512 bit 哈希冲 突 较多 较多 很少 很少 安全等 级 低,已被成功攻击 低,已被成功攻 击 高 高 应用 已被弃用,仍用于数据完整性检 查 已被弃用 加密货币交易验证、数字签名 等 可用于替代 SHA‑2 6.3.4 数据结构的哈希值 我们知道,哈希表的 细心的你可能发现在不同控制台中运行程序时,输出的哈希值是不同的。这是因为 Python 解释器在每次启 动时,都会为字符串哈希函数加入一个随机的盐(salt)值。这种做法可以有效防止 HashDoS 攻击,提升哈 希算法的安全性。 6.4 小结 1. 重点回顾 ‧ 输入 key ,哈希表能够在 ?(1) 时间内查询到 value ,效率非常高。 ‧ 常见的哈希表操作包括查询、添加键值对、删除键值对和遍历哈希表等。0 码力 | 376 页 | 17.59 MB | 1 年前3
共 5 条
- 1