积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(87)Julia(87)

语言

全部英语(76)中文(繁体)(10)中文(简体)(1)

格式

全部PDF文档 PDF(87)
 
本次搜索耗时 1.091 秒,为您找到相关结果约 87 个.
  • 全部
  • 后端开发
  • Julia
  • 全部
  • 英语
  • 中文(繁体)
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Julia 中文文档

    简介 科学计算对性能一直有着最高的需求,但目前各领域的专家却大量使用较慢的动态语言来开展他们 的日常工作。偏爱动态语言有很多很好的理由,因此我们不会舍弃动态的特性。幸运的是,现代编 程语言设计与编译器技术可以大大消除性能折衷(trade-off),并提供有足够生产力的单一环境进行 原型设计,而且能高效地部署性能密集型应用程序。Julia 语言在这其中扮演了这样一个角色:它是 一门灵活的动态语言,适合 的运作方式后,写出和 C 一样快的代码对你而言就是小菜一碟。 Julia 拥有可选类型标注和多重派发这两个特性,同时还拥有很棒的性能。这些都得归功于使用 LLVM 实现的类型推导和即时编译(JIT)技术。Julia 是一门支持过程式、函数式和面向对象的多范式语言。 它像 R、MATLAB 和 Python 一样简单,在高级数值计算方面有丰富的表现力,并且支持通用编程。为 了实现这个目标,Julia a=b 中的 b 指的是外部作用域内的 b,而不是后续参数中的 b。 9.14. 函数参数中的 DO 结构 77 9.14 函数参数中的 Do 结构 把函数作为参数传递给其他函数是一种强大的技术,但它的语法并不总是很方便。当函数参数占据 多行时,这样的调用便特别难以编写。例如,考虑在具有多种情况的函数上调用 map: map(x->begin if x < 0 && iseven(x)
    0 码力 | 1238 页 | 4.59 MB | 1 年前
    3
  • pdf文档 Julia v1.2.0 Documentation

    pseudo-code might look like: function matmul(a::AbstractMatrix, b::AbstractMatrix) op = (ai, bi) -> ai * bi + ai * bi ## this is insufficient because it assumes `one(eltype(a))` is constructable: # R = that `+` calls `promote_type` ## but this is not true for some types, such as Bool: # R = promote_type(ai, bi) # this is wrong, since depending on the return value # of type-inference is very brittle (as p-norm is defined as 998 CHAPTER 81. LINEAR ALGEBRA ∥A∥p = � n � i=1 |ai|p �1/p with ai the entries of A, |ai| the norm of ai, and n the length of A. Since the p-norm is computed using the norms of
    0 码力 | 1250 页 | 4.29 MB | 1 年前
    3
  • pdf文档 Julia v1.1.1 Documentation

    pseudo-code might look like: function matmul(a::AbstractMatrix, b::AbstractMatrix) op = (ai, bi) -> ai * bi + ai * bi ## this is insufficient because it assumes `one(eltype(a))` is constructable: # R = that `+` calls `promote_type` ## but this is not true for some types, such as Bool: # R = promote_type(ai, bi) # this is wrong, since depending on the return value # of type-inference is very brittle (as the corresponding length. The p-norm is defined as ∥A∥p = � n � i=1 |ai|p �1/p with ai the entries of A, |ai| the norm of ai, and n the length of A. Since the p-norm is computed using the norms of
    0 码力 | 1216 页 | 4.21 MB | 1 年前
    3
  • pdf文档 Julia 1.1.0 Documentation

    pseudo-code might look like: function matmul(a::AbstractMatrix, b::AbstractMatrix) op = (ai, bi) -> ai * bi + ai * bi ## this is insufficient because it assumes `one(eltype(a))` is constructable: # R = that `+` calls `promote_type` ## but this is not true for some types, such as Bool: # R = promote_type(ai, bi) # this is wrong, since depending on the return value # of type-inference is very brittle (as the corresponding length. The p-norm is defined as ∥A∥p = � n � i=1 |ai|p �1/p with ai the entries of A, |ai| the norm of ai, and n the length of A. Since the p-norm is computed using the norms of
    0 码力 | 1214 页 | 4.21 MB | 1 年前
    3
  • pdf文档 Julia 1.2.0 DEV Documentation

    pseudo-code might look like: function matmul(a::AbstractMatrix, b::AbstractMatrix) op = (ai, bi) -> ai * bi + ai * bi ## this is insufficient because it assumes `one(eltype(a))` is constructable: # R = that `+` calls `promote_type` ## but this is not true for some types, such as Bool: # R = promote_type(ai, bi) # this is wrong, since depending on the return value # of type-inference is very brittle (as p-norm is defined as 1000 CHAPTER 82. LINEAR ALGEBRA ∥A∥p = � n � i=1 |ai|p �1/p with ai the entries of A, |ai| the norm of ai, and n the length of A. Since the p-norm is computed using the norms of
    0 码力 | 1252 页 | 4.28 MB | 1 年前
    3
  • pdf文档 Julia v1.4.2 Documentation

    pseudo-code might look like: function matmul(a::AbstractMatrix, b::AbstractMatrix) op = (ai, bi) -> ai * bi + ai * bi ## this is insufficient because it assumes `one(eltype(a))` is constructable: # R `+` calls `promote_type` ## but this is not true for some types, such as Bool: # R = promote_type(ai, bi) # this is wrong, since depending on the return value # of type-inference is very brittle (as the corresponding length. The p-norm is defined as ∥A∥p = � n � i=1 |ai|p �1/p with ai the entries of A, |ai| the norm of ai, and n the length of A. Since the p-norm is computed using the norms of
    0 码力 | 1314 页 | 4.29 MB | 1 年前
    3
  • pdf文档 Julia v1.3.1 Documentation

    pseudo-code might look like: function matmul(a::AbstractMatrix, b::AbstractMatrix) op = (ai, bi) -> ai * bi + ai * bi ## this is insufficient because it assumes `one(eltype(a))` is constructable: # R = that `+` calls `promote_type` ## but this is not true for some types, such as Bool: # R = promote_type(ai, bi) # this is wrong, since depending on the return value # of type-inference is very brittle (as the corresponding length. The p-norm is defined as ∥A∥p = � n � i=1 |ai|p �1/p with ai the entries of A, |ai| the norm of ai, and n the length of A. Since the p-norm is computed using the norms of
    0 码力 | 1276 页 | 4.36 MB | 1 年前
    3
  • pdf文档 Julia v1.5.4 Documentation

    pseudo-code might look like: function matmul(a::AbstractMatrix, b::AbstractMatrix) op = (ai, bi) -> ai * bi + ai * bi ## this is insufficient because it assumes `one(eltype(a))` is constructable: # R `+` calls `promote_type` ## but this is not true for some types, such as Bool: # R = promote_type(ai, bi) # this is wrong, since depending on the return value # of type-inference is very brittle (as the corresponding length. The p-norm is defined as ∥A∥p = � n � i=1 |ai|p �1/p with ai the entries of A, |ai| the norm of ai, and n the length of A. Since the p-norm is computed using the norms of
    0 码力 | 1337 页 | 4.41 MB | 1 年前
    3
  • pdf文档 Julia v1.6.6 Documentation

    pseudo-code might look like: function matmul(a::AbstractMatrix, b::AbstractMatrix) op = (ai, bi) -> ai * bi + ai * bi ## this is insufficient because it assumes `one(eltype(a))` is constructable: # R ## but this is not true for some types, such as Bool: CHAPTER 12. METHODS 138 # R = promote_type(ai, bi) # this is wrong, since depending on the return value # of type-inference is very brittle (as the corresponding length. The p-norm is defined as ∥A∥p = � n � i=1 |ai|p �1/p with ai the entries of A, |ai| the norm of ai, and n the length of A. Since the p-norm is computed using the norms of
    0 码力 | 1324 页 | 4.54 MB | 1 年前
    3
  • pdf文档 Julia 1.6.5 Documentation

    pseudo-code might look like: function matmul(a::AbstractMatrix, b::AbstractMatrix) op = (ai, bi) -> ai * bi + ai * bi ## this is insufficient because it assumes `one(eltype(a))` is constructable: # R ## but this is not true for some types, such as Bool: CHAPTER 12. METHODS 138 # R = promote_type(ai, bi) # this is wrong, since depending on the return value # of type-inference is very brittle (as the corresponding length. The p-norm is defined as ∥A∥p = � n � i=1 |ai|p �1/p with ai the entries of A, |ai| the norm of ai, and n the length of A. Since the p-norm is computed using the norms of
    0 码力 | 1325 页 | 4.54 MB | 1 年前
    3
共 87 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 9
前往
页
相关搜索词
Julia中文文档v12.0Documentation1.11.2DEV4.23.15.46.61.6
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩