积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(87)Julia(87)

语言

全部英语(76)中文(繁体)(10)中文(简体)(1)

格式

全部PDF文档 PDF(87)
 
本次搜索耗时 0.688 秒,为您找到相关结果约 87 个.
  • 全部
  • 后端开发
  • Julia
  • 全部
  • 英语
  • 中文(繁体)
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 julia 1.10.10

    slower than multiplication. While some arrays — like Array itself — are implemented using a linear chunk of memory and directly use a linear index in their implementations, other arrays — like Diagonal length(a) ÷ Threads.nthreads()) tasks = map(chunks) do chunk Threads.@spawn sum_single(chunk) end chunk_sums = fetch.(tasks) return sum_single(chunk_sums) end sum_multi_good (generic function with 1 Consequently, a good multiprocessing environment should allow control over the "ownership" of a chunk of memory by a particular CPU. Julia provides a multiprocessing environment based on message passing
    0 码力 | 1692 页 | 6.34 MB | 3 月前
    3
  • pdf文档 Julia 1.10.9

    slower than multiplication. While some arrays — like Array itself — are implemented using a linear chunk of memory and directly use a linear index in their implementations, other arrays — like Diagonal length(a) ÷ Threads.nthreads()) tasks = map(chunks) do chunk Threads.@spawn sum_single(chunk) end chunk_sums = fetch.(tasks) return sum_single(chunk_sums) end sum_multi_good (generic function with 1 Consequently, a good multiprocessing environment should allow control over the "ownership" of a chunk of memory by a particular CPU. Julia provides a multiprocessing environment based on message passing
    0 码力 | 1692 页 | 6.34 MB | 3 月前
    3
  • pdf文档 Julia 1.11.4

    slower than multiplication. While some arrays — like Array itself — are implemented using a linear chunk of memory and directly use a linear index in their implementations, other arrays — like Diagonal chunks for parallel work. We then use Threads.@spawn to create tasks that individually sum each chunk. Finally, we sum the results from each task using sum_single again: julia> function sum_multi_good(a) length(a) ÷ Threads.nthreads()) tasks = map(chunks) do chunk Threads.@spawn sum_single(chunk) end chunk_sums = fetch.(tasks) return sum_single(chunk_sums) end sum_multi_good (generic function with 1
    0 码力 | 2007 页 | 6.73 MB | 3 月前
    3
  • pdf文档 Julia 1.11.5 Documentation

    slower than multiplication. While some arrays — like Array itself — are implemented using a linear chunk of memory and directly use a linear index in their implementations, other arrays — like Diagonal chunks for parallel work. We then use Threads.@spawn to create tasks that individually sum each chunk. Finally, we sum the results from each task using sum_single again: julia> function sum_multi_good(a) length(a) ÷ Threads.nthreads()) tasks = map(chunks) do chunk Threads.@spawn sum_single(chunk) end chunk_sums = fetch.(tasks) return sum_single(chunk_sums) end sum_multi_good (generic function with 1
    0 码力 | 2007 页 | 6.73 MB | 3 月前
    3
  • pdf文档 Julia 1.11.6 Release Notes

    slower than multiplication. While some arrays — like Array itself — are implemented using a linear chunk of memory and directly use a linear index in their implementations, other arrays — like Diagonal chunks for parallel work. We then use Threads.@spawn to create tasks that individually sum each chunk. Finally, we sum the results from each task using sum_single again: julia> function sum_multi_good(a) length(a) ÷ Threads.nthreads()) tasks = map(chunks) do chunk Threads.@spawn sum_single(chunk) end chunk_sums = fetch.(tasks) return sum_single(chunk_sums) end sum_multi_good (generic function with 1
    0 码力 | 2007 页 | 6.73 MB | 3 月前
    3
  • pdf文档 Julia v1.2.0 Documentation

    slower than mul�plica�on. While some arrays — like Array itself — are implemented using a linear chunk of memory and directly use a linear index in their implementa�ons, other arrays — like Diagonal — cache. Consequently, a good mul�processing environment should allow control over the "ownership" of a chunk of memory by a par�cular CPU. Julia provides a mul�processing environment based on message passing quite different. In a DArray, each process has local access to just a chunk of the data, and no two processes share the same chunk; in contrast, in a SharedArray each "par�cipa�ng" process has access to
    0 码力 | 1250 页 | 4.29 MB | 1 年前
    3
  • pdf文档 Julia v1.1.1 Documentation

    slower than mul�plica�on. While some arrays — like Array itself — are implemented using a linear chunk of memory and directly use a linear index in their implementa�ons, other arrays — like Diagonal — cache. Consequently, a good mul�processing environment should allow control over the "ownership" of a chunk of memory by a par�cular CPU. Julia provides a mul�processing environment based on message passing quite different. In a DArray, each process has local access to just a chunk of the data, and no two processes share the same chunk; in contrast, in a SharedArray each "par�cipa�ng" process has access to
    0 码力 | 1216 页 | 4.21 MB | 1 年前
    3
  • pdf文档 Julia 1.2.0 DEV Documentation

    slower than mul�plica�on. While some arrays — like Array itself — are implemented using a linear chunk of memory and directly use a linear index in their implementa�ons, other arrays — like Diagonal — cache. Consequently, a good mul�processing environment should allow control over the "ownership" of a chunk of memory by a par�cular CPU. Julia provides a mul�processing environment based on message passing quite different. In a DArray, each process has local access to just a chunk of the data, and no two processes share the same chunk; in contrast, in a SharedArray each "par�cipa�ng" process has access to
    0 码力 | 1252 页 | 4.28 MB | 1 年前
    3
  • pdf文档 Julia v1.9.4 Documentation

    slower than multiplication. While some arrays — like Array itself — are implemented using a linear chunk of memory and directly use a linear index in their implementations, other arrays — like Diagonal length(a) ÷ Threads.nthreads()) tasks = map(chunks) do chunk Threads.@spawn sum_single(chunk) end chunk_sums = fetch.(tasks) return sum_single(chunk_sums) end CHAPTER 24. MULTI-THREADING 303 sum_multi_good Consequently, a good multiprocessing environment should allow control over the "ownership" of a chunk of memory by a particular CPU. Julia provides a multiprocessing environment based on message passing
    0 码力 | 1644 页 | 5.27 MB | 1 年前
    3
  • pdf文档 Julia 1.9.3 Documentation

    slower than multiplication. While some arrays — like Array itself — are implemented using a linear chunk of memory and directly use a linear index in their implementations, other arrays — like Diagonal length(a) ÷ Threads.nthreads()) tasks = map(chunks) do chunk Threads.@spawn sum_single(chunk) end chunk_sums = fetch.(tasks) return sum_single(chunk_sums) end CHAPTER 24. MULTI-THREADING 303 sum_multi_good Consequently, a good multiprocessing environment should allow control over the "ownership" of a chunk of memory by a particular CPU. Julia provides a multiprocessing environment based on message passing
    0 码力 | 1644 页 | 5.27 MB | 1 年前
    3
共 87 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 9
前往
页
相关搜索词
julia1.1010Julia1.11DocumentationReleaseNotesv12.01.11.2DEV9.41.9
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩