Apache ShardingSphere 中文文档 5.2.0
运行测试用例 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 7 技术参考 326 7.1 数据兼容性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326 7.2 数据库网关 version} 10 Apache ShardingSphere document, v5.2.0 注意:请将 ${latest.release.version} 更改为实际的版本号。 3. 编辑 application.yml。 spring: shardingsphere: datasource: names: ds_0, ds_1 ds_0: type: 的阈值 在 1TB 之内,是比较合理的范围。 在传统的关系型数据库无法满足互联网场景需要的情况下,将数据存储至原生支持分布式的 NoSQL 的尝 试越来越多。但 NoSQL 对 SQL 的不兼容性以及生态圈的不完善,使得它们在与关系型数据库的博弈中始 终无法完成致命一击,而关系型数据库的地位却依然不可撼动。 数据分片指按照某个维度将存放在单一数据库中的数据分散地存放至多个数据库或表中以达到提升性能0 码力 | 449 页 | 5.85 MB | 1 年前3Apache ShardingSphere v5.5.0 中文文档
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479 12 技术参考 481 12.1 数据兼容性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481 12.2 数据库网关 version} 13 Apache ShardingSphere document 注意:请将 ${latest.release.version} 更改为实际的版本号。 3. 创建 YAML 配置文件 # JDBC 逻辑库名称。在集群模式中,使用该参数来联通 ShardingSphere-JDBC 与 ShardingSphere- Proxy。 的阈值 在 1TB 之内,是比较合理的范围。 在传统的关系型数据库无法满足互联网场景需要的情况下,将数据存储至原生支持分布式的 NoSQL 的尝 试越来越多。但 NoSQL 对 SQL 的不兼容性以及生态圈的不完善,使得它们在与关系型数据库的博弈中始 终无法完成致命一击,而关系型数据库的地位却依然不可撼动。 数据分片指按照某个维度将存放在单一数据库中的数据分散地存放至多个数据库或表中以达到提升性能0 码力 | 557 页 | 4.61 MB | 1 年前3Apache ShardingSphere 中文文档 5.4.1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453 ix 12 技术参考 455 12.1 数据兼容性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455 12.2 数据库网关 version} 13 Apache ShardingSphere document 注意:请将 ${latest.release.version} 更改为实际的版本号。 3. 创建 YAML 配置文件 # JDBC 逻辑库名称。在集群模式中,使用该参数来联通 ShardingSphere-JDBC 与 ShardingSphere- Proxy。 的阈值 在 1TB 之内,是比较合理的范围。 在传统的关系型数据库无法满足互联网场景需要的情况下,将数据存储至原生支持分布式的 NoSQL 的尝 试越来越多。但 NoSQL 对 SQL 的不兼容性以及生态圈的不完善,使得它们在与关系型数据库的博弈中始 终无法完成致命一击,而关系型数据库的地位却依然不可撼动。 数据分片指按照某个维度将存放在单一数据库中的数据分散地存放至多个数据库或表中以达到提升性能0 码力 | 530 页 | 4.49 MB | 1 年前3Apache ShardingSphere 中文文档 5.3.2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432 12 技术参考 434 12.1 数据兼容性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434 12.2 数据库网关 version} 13 Apache ShardingSphere document 注意:请将 ${latest.release.version} 更改为实际的版本号。 3. 创建 YAML 配置文件 # JDBC 逻辑库名称。在集群模式中,使用该参数来联通 ShardingSphere-JDBC 与 ShardingSphere- Proxy。 的阈值 在 1TB 之内,是比较合理的范围。 在传统的关系型数据库无法满足互联网场景需要的情况下,将数据存储至原生支持分布式的 NoSQL 的尝 试越来越多。但 NoSQL 对 SQL 的不兼容性以及生态圈的不完善,使得它们在与关系型数据库的博弈中始 终无法完成致命一击,而关系型数据库的地位却依然不可撼动。 数据分片指按照某个维度将存放在单一数据库中的数据分散地存放至多个数据库或表中以达到提升性能0 码力 | 508 页 | 4.44 MB | 1 年前3Apache ShardingSphere 中文文档 5.0.0-alpha
tId>${latest.release.version} 注意:请将 ${latest.release.version} 更改为实际的版本号。 2.1.2 2. 规则配置 ShardingSphere‐JDBC 可以通过 Java,YAML,Spring 命名空间和 Spring Boot Starter 这 4 种 的阈值 在 1TB 之内,是比较合理的范围。 在传统的关系型数据库无法满足互联网场景需要的情况下,将数据存储至原生支持分布式的 NoSQL 的尝 试越来越多。但 NoSQL 对 SQL 的不兼容性以及生态圈的不完善,使得它们在与关系型数据库的博弈中始 终无法完成致命一击,而关系型数据库的地位却依然不可撼动。 数据分片指按照某个维度将存放在单一数据库中的数据分散地存放至多个数据库或表中以达到提升性能 原本的顺序依次进行解析,性能很高。考虑到各种数据库 SQL 方言的 异同,在解析模块提供了各类数据库的 SQL 方言字典。 SQL 解析引擎 历史 SQL 解析作为分库分表类产品的核心,其性能和兼容性是最重要的衡量指标。ShardingSphere 的 SQL 解 析器经历了 3 代产品的更新迭代。 第一代 SQL 解析器为了追求性能与快速实现,在 1.4.x 之前的版本使用 Druid 作为0 码力 | 301 页 | 3.44 MB | 1 年前3Apache ShardingSphere 中文文档 5.1.1
tId>${latest.release.version} 注意:请将 ${latest.release.version} 更改为实际的版本号。 2.1.2 规则配置 ShardingSphere‐JDBC 可以通过 Java,YAML,Spring 命名空间和 Spring Boot Starter 这 4 种 方式 的阈值 在 1TB 之内,是比较合理的范围。 在传统的关系型数据库无法满足互联网场景需要的情况下,将数据存储至原生支持分布式的 NoSQL 的尝 试越来越多。但 NoSQL 对 SQL 的不兼容性以及生态圈的不完善,使得它们在与关系型数据库的博弈中始 终无法完成致命一击,而关系型数据库的地位却依然不可撼动。 数据分片指按照某个维度将存放在单一数据库中的数据分散地存放至多个数据库或表中以达到提升性能 原本的顺序依次进行解析,性能很高。考虑到各种数据库 SQL 方言的 异同,在解析模块提供了各类数据库的 SQL 方言字典。 SQL 解析引擎 历史 SQL 解析作为分库分表类产品的核心,其性能和兼容性是最重要的衡量指标。ShardingSphere 的 SQL 解 析器经历了 3 代产品的更新迭代。 第一代 SQL 解析器为了追求性能与快速实现,在 1.4.x 之前的版本使用 Druid 作为0 码力 | 409 页 | 4.47 MB | 1 年前3Apache ShardingSphere 中文文档 5.1.0
tId>${latest.release.version} 注意:请将 ${latest.release.version} 更改为实际的版本号。 2.1.2 规则配置 ShardingSphere‐JDBC 可以通过 Java,YAML,Spring 命名空间和 Spring Boot Starter 这 4 种 方式 的阈值 在 1TB 之内,是比较合理的范围。 在传统的关系型数据库无法满足互联网场景需要的情况下,将数据存储至原生支持分布式的 NoSQL 的尝 试越来越多。但 NoSQL 对 SQL 的不兼容性以及生态圈的不完善,使得它们在与关系型数据库的博弈中始 终无法完成致命一击,而关系型数据库的地位却依然不可撼动。 数据分片指按照某个维度将存放在单一数据库中的数据分散地存放至多个数据库或表中以达到提升性能 原本的顺序依次进行解析,性能很高。考虑到各种数据库 SQL 方言的 异同,在解析模块提供了各类数据库的 SQL 方言字典。 SQL 解析引擎 历史 SQL 解析作为分库分表类产品的核心,其性能和兼容性是最重要的衡量指标。ShardingSphere 的 SQL 解 析器经历了 3 代产品的更新迭代。 第一代 SQL 解析器为了追求性能与快速实现,在 1.4.x 之前的版本使用 Druid 作为0 码力 | 406 页 | 4.40 MB | 1 年前3Apache ShardingSphere 中文文档 5.0.0
tId>${latest.release.version} 注意:请将 ${latest.release.version} 更改为实际的版本号。 2.1.2 2. 规则配置 ShardingSphere‐JDBC 可以通过 Java,YAML,Spring 命名空间和 Spring Boot Starter 这 4 种 的阈值 在 1TB 之内,是比较合理的范围。 在传统的关系型数据库无法满足互联网场景需要的情况下,将数据存储至原生支持分布式的 NoSQL 的尝 试越来越多。但 NoSQL 对 SQL 的不兼容性以及生态圈的不完善,使得它们在与关系型数据库的博弈中始 终无法完成致命一击,而关系型数据库的地位却依然不可撼动。 数据分片指按照某个维度将存放在单一数据库中的数据分散地存放至多个数据库或表中以达到提升性能 原本的顺序依次进行解析,性能很高。考虑到各种数据库 SQL 方言的 异同,在解析模块提供了各类数据库的 SQL 方言字典。 SQL 解析引擎 历史 SQL 解析作为分库分表类产品的核心,其性能和兼容性是最重要的衡量指标。ShardingSphere 的 SQL 解 析器经历了 3 代产品的更新迭代。 第一代 SQL 解析器为了追求性能与快速实现,在 1.4.x 之前的版本使用 Druid 作为0 码力 | 385 页 | 4.26 MB | 1 年前3Apache ShardingSphere 中文文档 5.1.2
version} 7 Apache ShardingSphere document, v5.1.2 注意:请将 ${latest.release.version} 更改为实际的版本号。 3. 编辑 application.yml。 spring: shardingsphere: datasource: names: ds_0, ds_1 ds_0: type: 的阈值 在 1TB 之内,是比较合理的范围。 在传统的关系型数据库无法满足互联网场景需要的情况下,将数据存储至原生支持分布式的 NoSQL 的尝 试越来越多。但 NoSQL 对 SQL 的不兼容性以及生态圈的不完善,使得它们在与关系型数据库的博弈中始 终无法完成致命一击,而关系型数据库的地位却依然不可撼动。 数据分片指按照某个维度将存放在单一数据库中的数据分散地存放至多个数据库或表中以达到提升性能 原本的顺序依次进行解析,性能很高。考虑到各种数据库 SQL 方言的 异同,在解析模块提供了各类数据库的 SQL 方言字典。 SQL 解析引擎 历史 SQL 解析作为分库分表类产品的核心,其性能和兼容性是最重要的衡量指标。ShardingSphere 的 SQL 解 析器经历了 3 代产品的更新迭代。 第一代 SQL 解析器为了追求性能与快速实现,在 1.4.x 之前的版本使用 Druid 作为0 码力 | 446 页 | 4.67 MB | 1 年前3孟浩然-Apache ShardingSphere 架构解析&应用实践
SQL 方言和 数据库存储对接,用于打造异 构数据网关; 连接 连接是 ShardingSphere 的基础能 力,可以有效简化数据和应用之间 的连接。连接的设计要点在于强大 的数据库的兼容性,在应用和数据 之间搭建了一层与具体数据库实现 无关的桥梁,为增量能力提供了基 础。 增量 增量是 ShardingSphere 的主要能 力,在拦截访问数据库流量的前提 下,透明化的提供增量功能。增强0 码力 | 31 页 | 2.36 MB | 1 年前3
共 11 条
- 1
- 2