积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(9)数据库中间件(9)

语言

全部中文(简体)(9)

格式

全部PDF文档 PDF(9)
 
本次搜索耗时 0.106 秒,为您找到相关结果约 9 个.
  • 全部
  • 数据库
  • 数据库中间件
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Apache ShardingSphere v5.5.0 中文文档

    都落在数据库之上。而单一的数据节点,或者简单的主从架构,已经越来越难以承担。数据库的可用性, 已成为整个系统的关键。 从运维成本方面考虑,当一个数据库实例中的数据达到阈值以上,对于 DBA 的运维压力就会增大。数据 备份和恢复的时间成本都将随着数据量的大小而愈发不可控。一般来讲,单一数据库实例的数据的阈值 在 1TB 之内,是比较合理的范围。 在传统的关系型数据库无法满足互联网场景需要的情况下,将数据存储至原生支持分布式的 库(或表),奇数主键的记录放入 1 库(或表),如下图所示。 水平分片从理论上突破了单机数据量处理的瓶颈,并且扩展相对自由,是数据分片的标准解决方案。 8.1.2 挑战 虽然数据分片解决了性能、可用性以及单点备份恢复等问题,但分布式的架构在获得了收益的同时,也 引入了新的问题。 面对如此散乱的分片之后的数据,应用开发工程师和数据库管理员对数据库的操作变得异常繁重就是其 中的重要挑战之一。他们需要知道数据需要从哪个具体的数据库的子表中获取。 Capture)增量数据捕捉。CDC 可以监控 ShardingSphere‐Proxy 的存储节点中的数 据变化,捕捉到数据操作事件,过滤并提取有用信息,最终将这些变化数据发送到指定的目标上。 CDC 可以用于数据同步,数据备份和恢复等方面,目前支持 openGauss、MySQL 和 PostgreSQL。 运行部署 背景信息 ShardingSphere CDC 分为两个部分,一个是 CDC Server,另一个是
    0 码力 | 557 页 | 4.61 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.0.0-alpha

    都落在数据库之上。而单一的数据节点,或者简单的主从架构,已经越来越难以承担。数据库的可用性, 已成为整个系统的关键。 从运维成本方面考虑,当一个数据库实例中的数据达到阈值以上,对于 DBA 的运维压力就会增大。数据 备份和恢复的时间成本都将随着数据量的大小而愈发不可控。一般来讲,单一数据库实例的数据的阈值 在 1TB 之内,是比较合理的范围。 在传统的关系型数据库无法满足互联网场景需要的情况下,将数据存储至原生支持分布式的 ShardingSphere document, v5.0.0-beta 水平分片从理论上突破了单机数据量处理的瓶颈,并且扩展相对自由,是分库分表的标准解决方案。 3.1.2 挑战 虽然数据分片解决了性能、可用性以及单点备份恢复等问题,但分布式的架构在获得了收益的同时,也 引入了新的问题。 面对如此散乱的分库分表之后的数据,应用开发工程师和数据库管理员对数据库的操作变得异常繁重就 是其中的重要挑战之一。他们需要知
    0 码力 | 301 页 | 3.44 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.0.0

    都落在数据库之上。而单一的数据节点,或者简单的主从架构,已经越来越难以承担。数据库的可用性, 已成为整个系统的关键。 从运维成本方面考虑,当一个数据库实例中的数据达到阈值以上,对于 DBA 的运维压力就会增大。数据 备份和恢复的时间成本都将随着数据量的大小而愈发不可控。一般来讲,单一数据库实例的数据的阈值 在 1TB 之内,是比较合理的范围。 在传统的关系型数据库无法满足互联网场景需要的情况下,将数据存储至原生支持分布式的 库(或表),奇数主键的记录放入 1 库(或表),如下图所示。 水平分片从理论上突破了单机数据量处理的瓶颈,并且扩展相对自由,是数据分片的标准解决方案。 4.2.2 挑战 虽然数据分片解决了性能、可用性以及单点备份恢复等问题,但分布式的架构在获得了收益的同时,也 引入了新的问题。 面对如此散乱的分片之后的数据,应用开发工程师和数据库管理员对数据库的操作变得异常繁重就是其 中的重要挑战之一。他们需要知道数据需要从哪个具体的数据库的子表中获取。
    0 码力 | 385 页 | 4.26 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.1.1

    都落在数据库之上。而单一的数据节点,或者简单的主从架构,已经越来越难以承担。数据库的可用性, 已成为整个系统的关键。 从运维成本方面考虑,当一个数据库实例中的数据达到阈值以上,对于 DBA 的运维压力就会增大。数据 备份和恢复的时间成本都将随着数据量的大小而愈发不可控。一般来讲,单一数据库实例的数据的阈值 在 1TB 之内,是比较合理的范围。 在传统的关系型数据库无法满足互联网场景需要的情况下,将数据存储至原生支持分布式的 ShardingSphere document, v5.1.1 水平分片从理论上突破了单机数据量处理的瓶颈,并且扩展相对自由,是数据分片的标准解决方案。 4.3.2 挑战 虽然数据分片解决了性能、可用性以及单点备份恢复等问题,但分布式的架构在获得了收益的同时,也 引入了新的问题。 面对如此散乱的分片之后的数据,应用开发工程师和数据库管理员对数据库的操作变得异常繁重就是其 中的重要挑战之一。他们需要知道数据需要从哪个具体的数据库的子表中获取。
    0 码力 | 409 页 | 4.47 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.2.0

    都落在数据库之上。而单一的数据节点,或者简单的主从架构,已经越来越难以承担。数据库的可用性, 已成为整个系统的关键。 从运维成本方面考虑,当一个数据库实例中的数据达到阈值以上,对于 DBA 的运维压力就会增大。数据 备份和恢复的时间成本都将随着数据量的大小而愈发不可控。一般来讲,单一数据库实例的数据的阈值 在 1TB 之内,是比较合理的范围。 在传统的关系型数据库无法满足互联网场景需要的情况下,将数据存储至原生支持分布式的 库(或表),奇数主键的记录放入 1 库(或表),如下图所示。 水平分片从理论上突破了单机数据量处理的瓶颈,并且扩展相对自由,是数据分片的标准解决方案。 3.1.2 挑战 虽然数据分片解决了性能、可用性以及单点备份恢复等问题,但分布式的架构在获得了收益的同时,也 引入了新的问题。 面对如此散乱的分片之后的数据,应用开发工程师和数据库管理员对数据库的操作变得异常繁重就是其 中的重要挑战之一。他们需要知道数据需要从哪个具体的数据库的子表中获取。
    0 码力 | 449 页 | 5.85 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.4.1

    都落在数据库之上。而单一的数据节点,或者简单的主从架构,已经越来越难以承担。数据库的可用性, 已成为整个系统的关键。 从运维成本方面考虑,当一个数据库实例中的数据达到阈值以上,对于 DBA 的运维压力就会增大。数据 备份和恢复的时间成本都将随着数据量的大小而愈发不可控。一般来讲,单一数据库实例的数据的阈值 在 1TB 之内,是比较合理的范围。 在传统的关系型数据库无法满足互联网场景需要的情况下,将数据存储至原生支持分布式的 库(或表),奇数主键的记录放入 1 库(或表),如下图所示。 水平分片从理论上突破了单机数据量处理的瓶颈,并且扩展相对自由,是数据分片的标准解决方案。 8.1.2 挑战 虽然数据分片解决了性能、可用性以及单点备份恢复等问题,但分布式的架构在获得了收益的同时,也 引入了新的问题。 面对如此散乱的分片之后的数据,应用开发工程师和数据库管理员对数据库的操作变得异常繁重就是其 中的重要挑战之一。他们需要知道数据需要从哪个具体的数据库的子表中获取。
    0 码力 | 530 页 | 4.49 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.1.0

    都落在数据库之上。而单一的数据节点,或者简单的主从架构,已经越来越难以承担。数据库的可用性, 已成为整个系统的关键。 从运维成本方面考虑,当一个数据库实例中的数据达到阈值以上,对于 DBA 的运维压力就会增大。数据 备份和恢复的时间成本都将随着数据量的大小而愈发不可控。一般来讲,单一数据库实例的数据的阈值 在 1TB 之内,是比较合理的范围。 在传统的关系型数据库无法满足互联网场景需要的情况下,将数据存储至原生支持分布式的 ShardingSphere document, v5.1.0 水平分片从理论上突破了单机数据量处理的瓶颈,并且扩展相对自由,是数据分片的标准解决方案。 4.3.2 挑战 虽然数据分片解决了性能、可用性以及单点备份恢复等问题,但分布式的架构在获得了收益的同时,也 引入了新的问题。 面对如此散乱的分片之后的数据,应用开发工程师和数据库管理员对数据库的操作变得异常繁重就是其 中的重要挑战之一。他们需要知道数据需要从哪个具体的数据库的子表中获取。
    0 码力 | 406 页 | 4.40 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.3.2

    都落在数据库之上。而单一的数据节点,或者简单的主从架构,已经越来越难以承担。数据库的可用性, 已成为整个系统的关键。 从运维成本方面考虑,当一个数据库实例中的数据达到阈值以上,对于 DBA 的运维压力就会增大。数据 备份和恢复的时间成本都将随着数据量的大小而愈发不可控。一般来讲,单一数据库实例的数据的阈值 在 1TB 之内,是比较合理的范围。 在传统的关系型数据库无法满足互联网场景需要的情况下,将数据存储至原生支持分布式的 库(或表),奇数主键的记录放入 1 库(或表),如下图所示。 水平分片从理论上突破了单机数据量处理的瓶颈,并且扩展相对自由,是数据分片的标准解决方案。 8.1.2 挑战 虽然数据分片解决了性能、可用性以及单点备份恢复等问题,但分布式的架构在获得了收益的同时,也 引入了新的问题。 面对如此散乱的分片之后的数据,应用开发工程师和数据库管理员对数据库的操作变得异常繁重就是其 中的重要挑战之一。他们需要知道数据需要从哪个具体的数据库的子表中获取。
    0 码力 | 508 页 | 4.44 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.1.2

    都落在数据库之上。而单一的数据节点,或者简单的主从架构,已经越来越难以承担。数据库的可用性, 已成为整个系统的关键。 从运维成本方面考虑,当一个数据库实例中的数据达到阈值以上,对于 DBA 的运维压力就会增大。数据 备份和恢复的时间成本都将随着数据量的大小而愈发不可控。一般来讲,单一数据库实例的数据的阈值 在 1TB 之内,是比较合理的范围。 在传统的关系型数据库无法满足互联网场景需要的情况下,将数据存储至原生支持分布式的 ShardingSphere document, v5.1.2 水平分片从理论上突破了单机数据量处理的瓶颈,并且扩展相对自由,是数据分片的标准解决方案。 4.3.2 挑战 虽然数据分片解决了性能、可用性以及单点备份恢复等问题,但分布式的架构在获得了收益的同时,也 引入了新的问题。 面对如此散乱的分片之后的数据,应用开发工程师和数据库管理员对数据库的操作变得异常繁重就是其 中的重要挑战之一。他们需要知道数据需要从哪个具体的数据库的子表中获取。
    0 码力 | 446 页 | 4.67 MB | 1 年前
    3
共 9 条
  • 1
前往
页
相关搜索词
ApacheShardingSpherev55.0中文文档alpha5.15.25.45.3
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩