积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(13)数据库中间件(13)

语言

全部中文(简体)(11)

格式

全部PDF文档 PDF(13)
 
本次搜索耗时 0.129 秒,为您找到相关结果约 13 个.
  • 全部
  • 数据库
  • 数据库中间件
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Mybatis 3.3.0 中文用户指南

    SQL语句构建器 日志 日志 XML 映射配置文件 映射配置文件 MyBatis 的配置文件包含了影响 MyBatis 行为甚深的设置(settings)和属性(properties)信息。文档的顶层结构如下: configuration 配置 properties 属性 settings 设置 typeAliases 类型命名 typeHandlers 类型处理器 objectFactory 对象工厂 mode=OUT, jdbcType=CURSOR, javaType=ResultSet, resultMap=departmentResultMap} MyBatis 也支持很多高级的数据类型,比如结构体,但是当注册 out 参数时你必须告诉它语句类型名称。比如(再次提示,在实际中 Your visitors can save your web pages as PDF in one click resultType="DraftPost"/> resultMap 元素有很多子元素和一个值得讨论的结构。 下面是 resultMap 元素的概念视图 resultMap constructor - 类在实例化时,用来注入结果到构造方法中 idArg - ID 参数;标记结果作为 ID 可以帮助提高整体效能
    0 码力 | 98 页 | 2.03 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.4.1

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456 12.3.1 注册中心数据结构 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456 /rules . . . . . . . . . 学习、管理成本低,交互友好。 • 安全稳定 基于成熟数据库底座之上提供增量能力,兼顾安全性及稳定性。 • 弹性扩展 具备计算、存储平滑在线扩展能力,可满足业务多变的需求。 • 开放生态 通过多层次(内核、功能、生态)插件化能力,为用户提供可定制满足自身特殊需求的独有系统。 1.3. 产品优势 2 2 设计哲学 ShardingSphere 采用 Database Plus 设计哲学, 数据分片的开发者指南 8.1.6 核心概念 表 表是透明化数据分片的关键概念。Apache ShardingSphere 通过提供多样化的表类型,适配不同场景下 的数据分片需求。 逻辑表 相同结构的水平拆分数据库(表)的逻辑名称,是 SQL 中表的逻辑标识。例:订单数据根据主键尾数拆 分为 10 张表,分别是 t_order_0 到 t_order_9,他们的逻辑表名为 t_order。
    0 码力 | 530 页 | 4.49 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.3.2

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435 12.3.1 注册中心数据结构 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435 /rules . . . . . . . . . 学习、管理成本低,交互友好。 • 安全稳定 基于成熟数据库底座之上提供增量能力,兼顾安全性及稳定性。 • 弹性扩展 具备计算、存储平滑在线扩展能力,可满足业务多变的需求。 • 开放生态 通过多层次(内核、功能、生态)插件化能力,为用户提供可定制满足自身特殊需求的独有系统。 1.3. 产品优势 2 2 设计哲学 ShardingSphere 采用 Database Plus 设计哲学, 数据分片的开发者指南 8.1.6 核心概念 表 表是透明化数据分片的关键概念。Apache ShardingSphere 通过提供多样化的表类型,适配不同场景下 的数据分片需求。 逻辑表 相同结构的水平拆分数据库(表)的逻辑名称,是 SQL 中表的逻辑标识。例:订单数据根据主键尾数拆 分为 10 张表,分别是 t_order_0 到 t_order_9,他们的逻辑表名为 t_order。
    0 码力 | 508 页 | 4.44 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.2.0

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 7.3.1 注册中心数据结构 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 /rules . . . . . . . . . 学习、管理成本低,交互友好。 • 安全稳定 基于成熟数据库底座之上提供增量能力,兼顾安全性及稳定性。 • 弹性扩展 具备计算、存储平滑在线扩展能力,可满足业务多变的需求。 • 开放生态 通过多层次(内核、功能、生态)插件化能力,为用户提供可定制满足自身特殊需求的独有系统。 1.1. 什么是 ShardingSphere 2 Apache ShardingSphere document, v5 数据分片的开发者指南 3.1.6 核心概念 表 表是透明化数据分片的关键概念。Apache ShardingSphere 通过提供多样化的表类型,适配不同场景下 的数据分片需求。 逻辑表 相同结构的水平拆分数据库(表)的逻辑名称,是 SQL 中表的逻辑标识。例:订单数据根据主键尾数拆 分为 10 张表,分别是 t_order_0 到 t_order_9,他们的逻辑表名为 t_order。
    0 码力 | 449 页 | 5.85 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere v5.5.0 中文文档

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482 12.3.1 注册中心数据结构 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482 /rules . . . . . . . . . 学习、管理成本低,交互友好。 • 安全稳定 基于成熟数据库底座之上提供增量能力,兼顾安全性及稳定性。 • 弹性扩展 具备计算、存储平滑在线扩展能力,可满足业务多变的需求。 • 开放生态 通过多层次(内核、功能、生态)插件化能力,为用户提供可定制满足自身特殊需求的独有系统。 1.3. 产品优势 2 2 设计哲学 ShardingSphere 采用 Database Plus 设计哲学, 数据分片的开发者指南 8.1.6 核心概念 表 表是透明化数据分片的关键概念。Apache ShardingSphere 通过提供多样化的表类型,适配不同场景下 的数据分片需求。 逻辑表 相同结构的水平拆分数据库(表)的逻辑名称,是 SQL 中表的逻辑标识。例:订单数据根据主键尾数拆 分为 10 张表,分别是 t_order_0 到 t_order_9,他们的逻辑表名为 t_order。
    0 码力 | 557 页 | 4.61 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.0.0-alpha

    本小节主要介绍数据分片的核心概念,主要包括: • SQL 核心概念 • 分片核心概念 • 配置核心概念 • 行表达式 • 分布式主键 • 强制分片路由 SQL 逻辑表 水平拆分的数据库(表)的相同逻辑和数据结构表的总称。例:订单数据根据主键尾数拆分为 10 张表,分 别是 t_order_0 到 t_order_9,他们的逻辑表名为 t_order。 真实表 在分片的数据库中真实存在的物理表。即上个示例中的 将会以它作为整个绑定表的主表。所有路由计算将 会只使用主表的策略,那么 t_order_item 表的分片计算将会使用 t_order 的条件。故绑定表之间的 分区键要完全相同。 广播表 指所有的分片数据源中都存在的表,表结构和表中的数据在每个数据库中均完全一致。适用于数据量不 大且需要与海量数据的表进行关联查询的场景,例如:字典表。 单表 指所有的分片数据源中只存在唯一一张的表。适用于数据量不大且不需要做任何分片操作的场景。 配置数据节点 对于均匀分布的数据节点,如果数据结构如下: db0 ├── t_order0 └── t_order1 db1 ├── t_order0 └── t_order1 用行表达式可以简化为: db${0..1}.t_order${0..1} 或者 db$->{0..1}.t_order$->{0..1} 对于自定义的数据节点,如果数据结构如下: db0 ├── t_order0
    0 码力 | 301 页 | 3.44 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.0.0

    导览 本小节主要介绍数据分片的核心概念。 表 表是透明化数据分片的关键概念。Apache ShardingSphere 通过提供多样化的表类型,适配不同场景下 的数据分片需求。 逻辑表 相同结构的水平拆分数据库(表)的逻辑名称,是 SQL 中表的逻辑标识。例:订单数据根据主键尾数拆 分为 10 张表,分别是 t_order_0 到 t_order_9,他们的逻辑表名为 t_order。 将会以它作为整个绑定表的主表。所有路由计算将 会只使用主表的策略,那么 t_order_item 表的分片计算将会使用 t_order 的条件。因此,绑定表间 的分区键需要完全相同。 广播表 指所有的分片数据源中都存在的表,表结构及其数据在每个数据库中均完全一致。适用于数据量不大且 需要与海量数据的表进行关联查询的场景,例如:字典表。 单表 指所有的分片数据源中仅唯一存在的表。适用于数据量不大且无需分片的表。 数据节点 数据节点 对于均匀分布的数据节点,如果数据结构如下: db0 ├── t_order0 └── t_order1 db1 ├── t_order0 └── t_order1 用行表达式可以简化为: db${0..1}.t_order${0..1} 或者 db$->{0..1}.t_order$->{0..1} 对于自定义的数据节点,如果数据结构如下: db0 ├── t_order0
    0 码力 | 385 页 | 4.26 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.1.0

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 7.1.1 注册中心数据结构 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 /rules . . . . . . . . . 导览 本小节主要介绍数据分片的核心概念。 表 表是透明化数据分片的关键概念。Apache ShardingSphere 通过提供多样化的表类型,适配不同场景下 的数据分片需求。 逻辑表 相同结构的水平拆分数据库(表)的逻辑名称,是 SQL 中表的逻辑标识。例:订单数据根据主键尾数拆 分为 10 张表,分别是 t_order_0 到 t_order_9,他们的逻辑表名为 t_order。 将会以它作为整个绑定表的主表。所有路由计算将 会只使用主表的策略,那么 t_order_item 表的分片计算将会使用 t_order 的条件。因此,绑定表间 的分区键需要完全相同。 广播表 指所有的分片数据源中都存在的表,表结构及其数据在每个数据库中均完全一致。适用于数据量不大且 需要与海量数据的表进行关联查询的场景,例如:字典表。 单表 指所有的分片数据源中仅唯一存在的表。适用于数据量不大且无需分片的表。 数据节点
    0 码力 | 406 页 | 4.40 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.1.1

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 7.1.1 注册中心数据结构 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 /rules . . . . . . . . . 导览 本小节主要介绍数据分片的核心概念。 表 表是透明化数据分片的关键概念。Apache ShardingSphere 通过提供多样化的表类型,适配不同场景下 的数据分片需求。 逻辑表 相同结构的水平拆分数据库(表)的逻辑名称,是 SQL 中表的逻辑标识。例:订单数据根据主键尾数拆 分为 10 张表,分别是 t_order_0 到 t_order_9,他们的逻辑表名为 t_order。 e 将会以它作为整个绑定表的主表。所有路由计 算将会只使用主表的策略,那么 t_order_item 表的分片计算将会使用 t_order 的条件。 广播表 指所有的分片数据源中都存在的表,表结构及其数据在每个数据库中均完全一致。适用于数据量不大且 需要与海量数据的表进行关联查询的场景,例如:字典表。 单表 指所有的分片数据源中仅唯一存在的表。适用于数据量不大且无需分片的表。 数据节点
    0 码力 | 409 页 | 4.47 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.1.2

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 7.1.1 注册中心数据结构 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 /rules . . . . . . . . . 导览 本小节主要介绍数据分片的核心概念。 表 表是透明化数据分片的关键概念。Apache ShardingSphere 通过提供多样化的表类型,适配不同场景下 的数据分片需求。 逻辑表 相同结构的水平拆分数据库(表)的逻辑名称,是 SQL 中表的逻辑标识。例:订单数据根据主键尾数拆 分为 10 张表,分别是 t_order_0 到 t_order_9,他们的逻辑表名为 t_order。 e 将会以它作为整个绑定表的主表。所有路由计 算将会只使用主表的策略,那么 t_order_item 表的分片计算将会使用 t_order 的条件。 广播表 指所有的分片数据源中都存在的表,表结构及其数据在每个数据库中均完全一致。适用于数据量不大且 需要与海量数据的表进行关联查询的场景,例如:字典表。 单表 指所有的分片数据源中仅唯一存在的表。适用于数据量不大且无需分片的表。 数据节点
    0 码力 | 446 页 | 4.67 MB | 1 年前
    3
共 13 条
  • 1
  • 2
前往
页
相关搜索词
Mybatis3.3中文用户指南ApacheShardingSphere文档5.45.35.2v55.0alpha5.1
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩