积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(12)数据库中间件(12)

语言

全部中文(简体)(11)

格式

全部PDF文档 PDF(12)
 
本次搜索耗时 0.132 秒,为您找到相关结果约 12 个.
  • 全部
  • 数据库
  • 数据库中间件
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Apache ShardingSphere 中文文档 5.0.0-alpha

    效的避免由数据量超过可承受阈值而产生的查询瓶颈。除此之外,分库还能够用于有效的分散对数据库 单点的访问量;分表虽然无法缓解数据库压力,但却能够提供尽量将分布式事务转化为本地事务的可能, 一旦涉及到跨库的更新操作,分布式事务往往会使问题变得复杂。使用多主多从的分片方式,可以有效 的避免数据单点,从而提升数据架构的可用性。 通过分库和分表进行数据的拆分来使得各个表的数据量保持在阈值以下,以及对流量进行疏导应对高访 SQL,在分片之后的数据库中并不一定能够正确 运行。例如,分表导致表名称的修改,或者分页、排序、聚合分组等操作的不正确处理。 跨库事务也是分布式的数据库集群要面对的棘手事情。合理采用分表,可以在降低单表数据量的情况下, 尽量使用本地事务,善于使用同库不同表可有效避免分布式事务带来的麻烦。在不能避免跨库事务的场 景,有些业务仍然需要保持事务的一致性。而基于 XA 的分布式事务由于在并发度高的场景中性能无法满 作为下次查询条件的分 页方式等。 分页信息修正时,如果使用占位符的方式书写 SQL,则只需要改写参数列表即可,无需改写 SQL 本身。 批量拆分 在使用批量插入的 SQL 时,如果插入的数据是跨分片的,那么需要对 SQL 进行改写来防止将多余的数据 写入到数据库中。插入操作与查询操作的不同之处在于,查询语句中即使用了不存在于当前分片的分片 键,也不会对数据产生影响;而插入操作则必须将多余的分片键删除。举例说明,如下
    0 码力 | 301 页 | 3.44 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.1.1

    效的避免由数据量超过可承受阈值而产生的查询瓶颈。除此之外,分库还能够用于有效的分散对数据库 单点的访问量;分表虽然无法缓解数据库压力,但却能够提供尽量将分布式事务转化为本地事务的可能, 一旦涉及到跨库的更新操作,分布式事务往往会使问题变得复杂。使用多主多从的分片方式,可以有效 的避免数据单点,从而提升数据架构的可用性。 通过分库和分表进行数据的拆分来使得各个表的数据量保持在阈值以下,以及对流量进行疏导应对高访 SQL,在分片之后的数据库中并不一定能够正确 运行。例如,分表导致表名称的修改,或者分页、排序、聚合分组等操作的不正确处理。 跨库事务也是分布式的数据库集群要面对的棘手事情。合理采用分表,可以在降低单表数据量的情况下, 尽量使用本地事务,善于使用同库不同表可有效避免分布式事务带来的麻烦。在不能避免跨库事务的场 景,有些业务仍然需要保持事务的一致性。而基于 XA 的分布式事务由于在并发度高的场景中性能无法满 在水平拆分的数据库中真实存在的物理表。即上个示例中的 t_order_0 到 t_order_9。 绑定表 指分片规则一致的一组分片表。使用绑定表进行多表关联查询时,必须使用分片键进行关联,否则会出现笛 卡尔积关联或跨库关联,从而影响查询效率。例如:t_order 表和 t_order_item 表,均按照 order_id 分片,并且使用 order_id 进行关联,则此两张表互为绑定表关系。绑定表之间的多表关联查询不会出
    0 码力 | 409 页 | 4.47 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.1.0

    效的避免由数据量超过可承受阈值而产生的查询瓶颈。除此之外,分库还能够用于有效的分散对数据库 单点的访问量;分表虽然无法缓解数据库压力,但却能够提供尽量将分布式事务转化为本地事务的可能, 一旦涉及到跨库的更新操作,分布式事务往往会使问题变得复杂。使用多主多从的分片方式,可以有效 的避免数据单点,从而提升数据架构的可用性。 通过分库和分表进行数据的拆分来使得各个表的数据量保持在阈值以下,以及对流量进行疏导应对高访 SQL,在分片之后的数据库中并不一定能够正确 运行。例如,分表导致表名称的修改,或者分页、排序、聚合分组等操作的不正确处理。 跨库事务也是分布式的数据库集群要面对的棘手事情。合理采用分表,可以在降低单表数据量的情况下, 尽量使用本地事务,善于使用同库不同表可有效避免分布式事务带来的麻烦。在不能避免跨库事务的场 景,有些业务仍然需要保持事务的一致性。而基于 XA 的分布式事务由于在并发度高的场景中性能无法满 在水平拆分的数据库中真实存在的物理表。即上个示例中的 t_order_0 到 t_order_9。 绑定表 指分片规则一致的主表和子表。使用绑定表进行多表关联查询时,必须使用分片键进行关联,否则会出现笛 卡尔积关联或跨库关联,从而影响查询效率。例如:t_order 表和 t_order_item 表,均按照 order_id 分片,并且使用 order_id 进行关联,则此两张表互为绑定表关系。绑定表之间的多表关联查询不会出
    0 码力 | 406 页 | 4.40 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.1.2

    效的避免由数据量超过可承受阈值而产生的查询瓶颈。除此之外,分库还能够用于有效的分散对数据库 单点的访问量;分表虽然无法缓解数据库压力,但却能够提供尽量将分布式事务转化为本地事务的可能, 一旦涉及到跨库的更新操作,分布式事务往往会使问题变得复杂。使用多主多从的分片方式,可以有效 的避免数据单点,从而提升数据架构的可用性。 通过分库和分表进行数据的拆分来使得各个表的数据量保持在阈值以下,以及对流量进行疏导应对高访 SQL,在分片之后的数据库中并不一定能够正确 运行。例如,分表导致表名称的修改,或者分页、排序、聚合分组等操作的不正确处理。 跨库事务也是分布式的数据库集群要面对的棘手事情。合理采用分表,可以在降低单表数据量的情况下, 尽量使用本地事务,善于使用同库不同表可有效避免分布式事务带来的麻烦。在不能避免跨库事务的场 景,有些业务仍然需要保持事务的一致性。而基于 XA 的分布式事务由于在并发度高的场景中性能无法满 在水平拆分的数据库中真实存在的物理表。即上个示例中的 t_order_0 到 t_order_9。 绑定表 指分片规则一致的一组分片表。使用绑定表进行多表关联查询时,必须使用分片键进行关联,否则会出现笛 卡尔积关联或跨库关联,从而影响查询效率。例如:t_order 表和 t_order_item 表,均按照 order_id 分片,并且使用 order_id 进行关联,则此两张表互为绑定表关系。绑定表之间的多表关联查询不会出
    0 码力 | 446 页 | 4.67 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.4.1

    效的分散对数据库 单点的访问量;分表虽然无法缓解数据库压力,但却能够提供尽量将分布式事务转化为本地事务的可能, 18 Apache ShardingSphere document 一旦涉及到跨库的更新操作,分布式事务往往会使问题变得复杂。使用多主多从的分片方式,可以有效 的避免数据单点,从而提升数据架构的可用性。 通过分库和分表进行数据的拆分来使得各个表的数据量保持在阈值以下,以及对流量进行疏导应对高访 SQL,在分片之后的数据库中并不一定能够正确 运行。例如,分表导致表名称的修改,或者分页、排序、聚合分组等操作的不正确处理。 跨库事务也是分布式的数据库集群要面对的棘手事情。合理采用分表,可以在降低单表数据量的情况下, 尽量使用本地事务,善于使用同库不同表可有效避免分布式事务带来的麻烦。在不能避免跨库事务的场 景,有些业务仍然需要保持事务的一致性。而基于 XA 的分布式事务由于在并发度高的场景中性能无法满 在水平拆分的数据库中真实存在的物理表。即上个示例中的 t_order_0 到 t_order_9。 绑定表 指分片规则一致的一组分片表。使用绑定表进行多表关联查询时,必须使用分片键进行关联,否则会出现笛 卡尔积关联或跨库关联,从而影响查询效率。例如:t_order 表和 t_order_item 表,均按照 order_id 分片,并且使用 order_id 进行关联,则此两张表互为绑定表关系。绑定表之间的多表关联查询不会出
    0 码力 | 530 页 | 4.49 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.3.2

    效的分散对数据库 单点的访问量;分表虽然无法缓解数据库压力,但却能够提供尽量将分布式事务转化为本地事务的可能, 18 Apache ShardingSphere document 一旦涉及到跨库的更新操作,分布式事务往往会使问题变得复杂。使用多主多从的分片方式,可以有效 的避免数据单点,从而提升数据架构的可用性。 通过分库和分表进行数据的拆分来使得各个表的数据量保持在阈值以下,以及对流量进行疏导应对高访 SQL,在分片之后的数据库中并不一定能够正确 运行。例如,分表导致表名称的修改,或者分页、排序、聚合分组等操作的不正确处理。 跨库事务也是分布式的数据库集群要面对的棘手事情。合理采用分表,可以在降低单表数据量的情况下, 尽量使用本地事务,善于使用同库不同表可有效避免分布式事务带来的麻烦。在不能避免跨库事务的场 景,有些业务仍然需要保持事务的一致性。而基于 XA 的分布式事务由于在并发度高的场景中性能无法满 在水平拆分的数据库中真实存在的物理表。即上个示例中的 t_order_0 到 t_order_9。 绑定表 指分片规则一致的一组分片表。使用绑定表进行多表关联查询时,必须使用分片键进行关联,否则会出现笛 卡尔积关联或跨库关联,从而影响查询效率。例如:t_order 表和 t_order_item 表,均按照 order_id 分片,并且使用 order_id 进行关联,则此两张表互为绑定表关系。绑定表之间的多表关联查询不会出
    0 码力 | 508 页 | 4.44 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.2.0

    上,可计算与存储水平扩展的分布式数据库解决方案。 分 布 式 事 务 事务能力,是保障数据库完整、安全的关键技术,也是数据库的核心技术之一。ShardingSphere 提供在单机数据库之上的分布式事务能力,可实现跨底层数据源的数据安全。 读 写 分离 读写分离,是应对高压力业务访问的手段之一。ShardingSphere 基于对 SQL 语义理解及底层 数据库拓扑感知能力,提供灵活、安全的读写分离能力,且可实现读访问的负载均衡。 数据迁移,是打通数据生态的关键能力。SharingSphere 提供基于数据全场景的迁移能力,可 应对业务数据量激增的场景。 联 邦 查询 联邦查询,是面对复杂数据环境下利用数据的有效手段之一。ShardingSphere 提供跨数据源 的复杂数据查询分析能力,简化并提升数据使用体验。 数 据 加密 数据加密,是保证数据安全的基本手段。ShardingSphere 提供一套完整的、透明化、安全的、 低改造成本的数据加密解决方案。 单点的访问量;分表虽然无法缓解数据库压力,但却能够提供尽量将分布式事务转化为本地事务的可能, 14 Apache ShardingSphere document, v5.2.0 一旦涉及到跨库的更新操作,分布式事务往往会使问题变得复杂。使用多主多从的分片方式,可以有效 的避免数据单点,从而提升数据架构的可用性。 通过分库和分表进行数据的拆分来使得各个表的数据量保持在阈值以下,以及对流量进行疏导应对高访
    0 码力 | 449 页 | 5.85 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere v5.5.0 中文文档

    效的分散对数据库 单点的访问量;分表虽然无法缓解数据库压力,但却能够提供尽量将分布式事务转化为本地事务的可能, 18 Apache ShardingSphere document 一旦涉及到跨库的更新操作,分布式事务往往会使问题变得复杂。使用多主多从的分片方式,可以有效 的避免数据单点,从而提升数据架构的可用性。 通过分库和分表进行数据的拆分来使得各个表的数据量保持在阈值以下,以及对流量进行疏导应对高访 SQL,在分片之后的数据库中并不一定能够正确 运行。例如,分表导致表名称的修改,或者分页、排序、聚合分组等操作的不正确处理。 跨库事务也是分布式的数据库集群要面对的棘手事情。合理采用分表,可以在降低单表数据量的情况下, 尽量使用本地事务,善于使用同库不同表可有效避免分布式事务带来的麻烦。在不能避免跨库事务的场 景,有些业务仍然需要保持事务的一致性。而基于 XA 的分布式事务由于在并发度高的场景中性能无法满 在水平拆分的数据库中真实存在的物理表。即上个示例中的 t_order_0 到 t_order_9。 绑定表 指分片规则一致的一组分片表。使用绑定表进行多表关联查询时,必须使用分片键进行关联,否则会出现笛 卡尔积关联或跨库关联,从而影响查询效率。例如:t_order 表和 t_order_item 表,均按照 order_id 分片,并且使用 order_id 进行关联,则此两张表互为绑定表关系。绑定表之间的多表关联查询不会出
    0 码力 | 557 页 | 4.61 MB | 1 年前
    3
  • pdf文档 Apache ShardingSphere 中文文档 5.0.0

    数据分片 19 Apache ShardingSphere document, v5.0.0 单点的访问量;分表虽然无法缓解数据库压力,但却能够提供尽量将分布式事务转化为本地事务的可能, 一旦涉及到跨库的更新操作,分布式事务往往会使问题变得复杂。使用多主多从的分片方式,可以有效 的避免数据单点,从而提升数据架构的可用性。 通过分库和分表进行数据的拆分来使得各个表的数据量保持在阈值以下,以及对流量进行疏导应对高访 SQL,在分片之后的数据库中并不一定能够正确 运行。例如,分表导致表名称的修改,或者分页、排序、聚合分组等操作的不正确处理。 跨库事务也是分布式的数据库集群要面对的棘手事情。合理采用分表,可以在降低单表数据量的情况下, 尽量使用本地事务,善于使用同库不同表可有效避免分布式事务带来的麻烦。在不能避免跨库事务的场 景,有些业务仍然需要保持事务的一致性。而基于 XA 的分布式事务由于在并发度高的场景中性能无法满 WHERE order_id = 1) o WHERE o.order_id = 2; 4.2. 数据分片 32 Apache ShardingSphere document, v5.0.0 跨库关联查询 当关联查询中的多个表分布在不同的数据库实例上时,由 Federation 执行引擎提供支持。假设 t_order 和 t_order_item 是多数据节点的分片表,并且未配置绑定表规则,t_user
    0 码力 | 385 页 | 4.26 MB | 1 年前
    3
  • pdf文档 Mybatis 3.3.0 中文用户指南

    BY ${columnName} 这里 MyBatis 不会修改或转义字符串。 NOTE NOTE 以这种方式接受从用户输出的内容并提供给语句中不变的字符串是不安全的,会导致潜在的 SQL 注入攻击,因此要么不允许用 户输入这些字段,要么自行转义并检验。 Result Maps resultMap 元素是 MyBatis 中最重要最强大的元素。它就是让你远离 90%的需要从结果 集中取出数据的 insert into users values (#{id}, #{name}) 动态 动态 SQL 中可插拔的脚本语言 中可插拔的脚本语言 MyBatis 从 3.2 开始支持可插拔的脚本语言,因此你可以在插入一种语言的驱动(language driver)之后来写基于这种语言的动态 SQL 查询。 可以通过实现下面接口的方式来插入一种语言:
    0 码力 | 98 页 | 2.03 MB | 1 年前
    3
共 12 条
  • 1
  • 2
前往
页
相关搜索词
ApacheShardingSphere中文文档5.0alpha5.15.45.35.2v5Mybatis3.3用户指南
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩