动手学深度学习 v2.0
. . 354 9.4.3 双向循环神经网络的错误应用 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356 9.5 机器翻译与数据集 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357 9.5.1 下载和预处理数据集 的,模型可能就需要拥有 “记忆”功能。比如,我们该如何处理视频片段呢?在这种情况下,每个视频片段可能由不同数量的帧组成。 通过前一帧的图像,我们可能对后一帧中发生的事情更有把握。语言也是如此,机器翻译的输入和输出都为 文字序列。 再比如,在医学上序列输入和输出就更为重要。设想一下,假设一个模型被用来监控重症监护病人,如果他 1.3. 各种机器学习问题 27 们在未来24小时内死亡的风险 人病史的所有信息,而仅根据最近的测量结果做出预测。 这些问题是序列学习的实例,是机器学习最令人兴奋的应用之一。序列学习需要摄取输入序列或预测输出序 列,或两者兼而有之。具体来说,输入和输出都是可变长度的序列,例如机器翻译和从语音中转录文本。虽 然不可能考虑所有类型的序列转换,但以下特殊情况值得一提。 标记和解析。这涉及到用属性注释文本序列。换句话说,输入和输出的数量基本上是相同的。例如,我们可 能想知道动词0 码力 | 797 页 | 29.45 MB | 1 年前3Qcon北京2018-《文本智能处理的深度学习技术》-陈运文
目的:让机器理解人类的语言,是人工智能领域的重要 分支,用于分析、理解和生成自然语言,方便人机交流 应用:智能问答,机器翻译,文本分类,文本摘要,标 签提取,情感分析,主题模型 NLP发展简史 1950S 1980s 1990s 2006~至今 以机器翻译为开端,作 为早期尝试,但不是很 成功 基于统计机器学习技术 及语料库,使用统计模 型,NLP发展产生革新 多数自然语言处理系统 深度学习用于各类型文本应用的实践方法 文本挖掘各种类型应用的处理框架 文本数据 结果 预处理 输出层 表示层 隐层 不同深度学习模型 后处理 NER 分词 情感分析 文本分类 机器翻译 … 文本分类 传统机器学习 • 选择分类器(朴素贝叶斯,SVM,KNN,LR,决 策树) • 特征工程构造特征 • 不同领域定制优化成本高 • 常需要分类算法融合提升效果 深度学习(CNN,RNN等)0 码力 | 46 页 | 25.61 MB | 1 年前3机器学习课程-温州大学-13深度学习-Transformer
息会被弱化,就好像记忆能力弱的人,记不住过去的事情是一样的。 10 2017年google的机器翻译团队在 NIPS上发表了Attention is all you need的文章,开创性地提出了 在序列转录领域,完全抛弃 CNN和RNN,只依赖Attention-注 意力结构的简单的网络架构, 名为Transformer;论文实现的 任务是机器翻译。 Transformer结构 Multi-Head Attention Transformer的训练 02 Transformer的工作流程 04 BERT 14 2.Transformer的工作流程 从宏观的视角开始 首先将这个模型看成是一个黑箱操作。在机器翻译中,就 是输入一种语言,输出另一种语言。 15 2.Transformer的工作流程 那么拆开这个黑箱,我们可以看到它是由编码组件、解码组件和它们之间的 连接组成。 16 2.Transformer的工作流程0 码力 | 60 页 | 3.51 MB | 1 年前3机器学习课程-温州大学-14深度学习-Vision Transformer (ViT)
背景知识 图片分类的原理 5 2017年google的机器翻译团队在 NIPS上发表了Attention is all you need的文章,开创性地提出了 在序列转录领域,完全抛弃 CNN和RNN,只依赖Attention-注 意力结构的简单的网络架构, 名为Transformer;论文实现的 任务是机器翻译。 Transformer结构 Multi-Head Attention0 码力 | 34 页 | 2.78 MB | 1 年前3【PyTorch深度学习-龙龙老师】-测试版202112
至超人的智力水平, 如在围棋上 AlphaGo 智能程序已经击败人类最强围棋专家之一柯洁,在 Dota2 游戏上 OpenAI Five 智能程序击败世界冠军队伍 OG,同时人脸识别、智能语音、机器翻译等一项 项实用的技术已经进入到人们的日常生活中。现在我们的生活处处被人工智能所环绕,尽 管目前能达到的智能水平离通用人工智能(Artificial General Intelligence,简称 AGI)还有一 Zero 2019 OpenAI Five ResNet 2015 2014 VGG GooLeNet 2015 Batch Normalization 德州扑克 Pluribus 2019 机器翻译 BERT 2018 TensorFlow 发布 2015 PyTorch 0.1 发布 2017 2018 PyTorch 1.0 发布 图 1.9 深度学习发展时间线 1 自然语言处理 机器翻译(Machine Translation) 过去的机器翻译算法大多是基于统计机器翻译模型,这 也是 2016 年前 Google 翻译系统采用的技术。2016 年 11 月,Google 基于 Seq2Seq 模型上 线了神经机器翻译系统(GNMT),首次实现了从源语言到目标语言的直译技术,在多项任 务上获得了 50~90%的效果提升。常用的机器翻译模型有 Seq2Seq、BERT、GPT、GPT-20 码力 | 439 页 | 29.91 MB | 1 年前3机器学习课程-温州大学-01深度学习-引言
基于规则的方法 2008 • 深度学习 未来 深度学习入门-NLP(自然语言处理) 19 深度学习入门-NLP(自然语言处理) 1.短文本相似 2.文本分类 3.QA机器人 4.语义标注 5.机器翻译 6.…… 20 2020 2013 2017 2019 2018 • ELECTRA • ALBERT • GPT-3 • BERT • GPT • ELMo 2014 • word2vec0 码力 | 80 页 | 5.38 MB | 1 年前3
共 6 条
- 1