pandas: powerful Python data analysis toolkit - 0.25
object, which requires casting every value to a Python object. For df, our DataFrame of all floating-point values, DataFrame.to_numpy() is fast and doesnt require copying data. 16 Chapter 3. Getting one-dimensional labeled array capable of holding any data type (integers, strings, floating point numbers, Python objects, etc.). The axis labels are collectively referred to as the index. The basic method flexibility: what can/cannot be done with each tool • Performance: how fast are operations. Hard numbers/benchmarks are preferable • Ease-of-use: Is one tool easier/harder to use (you may have to be the0 码力 | 698 页 | 4.91 MB | 1 年前3pandas: powerful Python data analysis toolkit - 0.20.3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1011 24.1.10 Specifying method for floating-point conversion . . . . . . . . . . . . . . . . . . . . . . . . 1012 24.1.11 Thousand Separators (GH11783). 1.8.2.9 Removal of deprecated float indexers In GH4892 indexing with floating point numbers on a non-Float64Index was deprecated (in version 0.14.0). In 0.18.0, this deprecation warning is right_only For more, see the updated docs • pd.to_numeric is a new function to coerce strings to numbers (possibly with coercion) (GH11133) • pd.merge will now allow duplicate column names if they are0 码力 | 2045 页 | 9.18 MB | 1 年前3pandas: powerful Python data analysis toolkit - 0.20.2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1007 24.1.10 Specifying method for floating-point conversion . . . . . . . . . . . . . . . . . . . . . . . . 1007 24.1.11 Thousand Separators (GH11783). 1.7.2.9 Removal of deprecated float indexers In GH4892 indexing with floating point numbers on a non-Float64Index was deprecated (in version 0.14.0). In 0.18.0, this deprecation warning is right_only For more, see the updated docs • pd.to_numeric is a new function to coerce strings to numbers (possibly with coercion) (GH11133) • pd.merge will now allow duplicate column names if they are0 码力 | 1907 页 | 7.83 MB | 1 年前3pandas: powerful Python data analysis toolkit - 0.19.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 914 25.1.10 Specifying method for floating-point conversion . . . . . . . . . . . . . . . . . . . . . . . . 914 25.1.11 Thousand Separators . sheets (GH11783). Removal of deprecated float indexers In GH4892 indexing with floating point numbers on a non-Float64Index was deprecated (in version 0.14.0). In 0.18.0, this deprecation warning is right_only For more, see the updated docs • pd.to_numeric is a new function to coerce strings to numbers (possibly with coercion) (GH11133) • pd.merge will now allow duplicate column names if they are0 码力 | 1937 页 | 12.03 MB | 1 年前3pandas: powerful Python data analysis toolkit - 0.19.1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 916 25.1.10 Specifying method for floating-point conversion . . . . . . . . . . . . . . . . . . . . . . . . 916 25.1.11 Thousand Separators . toolkit, Release 0.19.1 Removal of deprecated float indexers In GH4892 indexing with floating point numbers on a non-Float64Index was deprecated (in version 0.14.0). In 0.18.0, this deprecation warning is right_only For more, see the updated docs • pd.to_numeric is a new function to coerce strings to numbers (possibly with coercion) (GH11133) • pd.merge will now allow duplicate column names if they are0 码力 | 1943 页 | 12.06 MB | 1 年前3pandas: powerful Python data analysis toolkit - 0.7.1
(technically a subclass of ndarray) capable of holding any data type (integers, strings, floating point numbers, Python objects, etc.). The axis labels are collectively referred to as the index. The basic method Formatting Use the set_eng_float_format function in the pandas.core.common module to alter the floating-point formatting of pandas objects to produce a particular format. For instance: In [154]: set_e Name: a The set_printoptions function has a number of options for controlling how floating point numbers are formatted (using hte precision argument) in the console and . The max_rows and max_columns control0 码力 | 281 页 | 1.45 MB | 1 年前3pandas: powerful Python data analysis toolkit - 0.7.2
(technically a subclass of ndarray) capable of holding any data type (integers, strings, floating point numbers, Python objects, etc.). The axis labels are collectively referred to as the index. The basic method Formatting Use the set_eng_float_format function in the pandas.core.common module to alter the floating-point formatting of pandas objects to produce a particular format. For instance: In [154]: set_e Name: a The set_printoptions function has a number of options for controlling how floating point numbers are formatted (using hte precision argument) in the console and . The max_rows and max_columns control0 码力 | 283 页 | 1.45 MB | 1 年前3pandas: powerful Python data analysis toolkit - 0.21.1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1046 24.1.10 Specifying method for floating-point conversion . . . . . . . . . . . . . . . . . . . . . . . . 1047 xx 24.1.11 Thousand Separators formatting addressed (GH17990). Previously columns with display formatting were normally left as ordinal numbers and not con- verted to datetime objects. • Bug in read_csv() when reading a compressed UTF-16 encoded (GH11783). 1.10.2.9 Removal of deprecated float indexers In GH4892 indexing with floating point numbers on a non-Float64Index was deprecated (in version 0.14.0). In 0.18.0, this deprecation warning is0 码力 | 2207 页 | 8.59 MB | 1 年前3pandas: powerful Python data analysis toolkit - 0.7.3
(technically a subclass of ndarray) capable of holding any data type (integers, strings, floating point numbers, Python objects, etc.). The axis labels are collectively referred to as the index. The basic method Formatting Use the set_eng_float_format function in the pandas.core.common module to alter the floating-point formatting of pandas objects to produce a particular format. For instance: In [154]: set_e Name: a The set_printoptions function has a number of options for controlling how floating point numbers are formatted (using hte precision argument) in the console and . The max_rows and max_columns control0 码力 | 297 页 | 1.92 MB | 1 年前3《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures
video, etc. to a low-dimensional representation such as a fixed length vector of floating point numbers, thus performing dimensionality reduction1. b) The low-dimensional representation should allow us about animals into just two dimensions, and established a relationship between them purely using numbers, where their relative closeness in the euclidean space on the plot denotes their similarity. We can sequences have the same length. Step 3: Embedding Table Initialization Our embedding table is a floating-point tensor of shape ( , ), where the -th row is an embedding corresponding to the the -th word in0 码力 | 53 页 | 3.92 MB | 1 年前3
共 220 条
- 1
- 2
- 3
- 4
- 5
- 6
- 22