Hadoop 概述
Hadoop 概述 本章内容提要 ● Hadoop 的组件 ● HDFS、MapReduce、YARN、ZooKeeper 和 Hive 的角色 ● Hadoop 与其他系统的集成 ● 数据集成与 Hadoop Hadoop 是一种用于管理大数据的基本工具。这种工具满足了企 业在大型数据库(在 Hadoop 中亦称为数据湖)管理方面日益增长的 需求。当 商业促使各种组织收集越来越多的数据,而这也增加了高效管理这 些数据的需求。本章探讨 Hadoop Stack,以及所有可与 Hadoop 一 起使用的相关组件。 在构建 Hadoop Stack 的过程中,每个组件都在平台中扮演着重 要角色。软件栈始于 Hadoop Common 中所包含的基础组件。Hadoop 1 第 章 Hadoop 大数据解决方案 2 Common 是常见工具和库的集合,用于支持其他 是常见工具和库的集合,用于支持其他 Hadoop 模块。和 其他软件栈一样,这些支持文件是一款成功实现的必要条件。而众 所周知的文件系统,Hadoop 分布式文件系统,或者说 HDFS,则是 Hadoop 的核心,然而它并不会威胁到你的预算。如果要分析一组数 据,你可以使用 MapReduce 中包含的编程逻辑,它提供了在 Hadoop 群集上横跨多台服务器的可扩展性。为实现资源管理,可考虑将 Hadoop YARN0 码力 | 17 页 | 583.90 KB | 1 年前3Hadoop Shell 命令
0 码力 | 10 页 | 99.34 KB | 1 年前3Hadoop 3.0以及未来
Hadoop 3.0以及未来 刘 轶 自我简介 • Apache Hadoop的committer和顷目管理委员会成员。 • ebay的Paid IM(互联网市场)部门架构师,领导ebay产品广告、互 联网市场数据和实验平台的架构设计。负责领导使用Hadoop、 Spark、Kafka、Cassandra等开源大数据顷目建立ebay的广告和数 据平台。 • 加入ebay前,在intel工作6年,大数据架构师,负责领导大数据的 超过9年的互联网、云计算、大数据的工作经验。 概要 • Hadoop的历叱 • Hadoop 3介绍 Common HDFS YARN MapReduce • Hadoop的未来发展方向 Hadoop的历叱 2004 2005 2012 2007 2008 2009 2010 2011 2006 2013 2014 2015 2016 2003 Hadoop从 Nutch分离 Google Hortonworks创立 Hadoop 1.0发布 Hadoop 2.0 GA Spark成为顶级顷目 Hadoop 3.0 2017 Hadoop生态系统 文件存储层 HDFS 资源/任务调度 YARN 计算引擎MapReduce 计算引擎Spark NoSQL HBase 数据仓 库SQL 机器/深 度学习 Batch 任务 流处理 搜索 … Kafka Hadoop 3介绍 •0 码力 | 33 页 | 841.56 KB | 1 年前3Hadoop开发指南
Hadoop开发指南 开发指南 注解:本例中所运⾏脚本需在CentOS操作系统上,其他操作系统请修改脚本后再尝试执⾏。 1. 在 在UHost上安装 上安装Hadoop客户端 客户端 出于安全性考虑,⼀般建议⽤⼾在⾮UHadoop集群机器上安装客⼾端进⾏任务提交与相关操作 1.1 控制台安装 控制台安装 可通过控制台⼀键安装,参考:客⼾端安装。 1.2 ⾃⾏安装 ⾃⾏安装 针对部分存 利⽤安装脚本部署 在任⼀master节点下的都有 /root/install\_uhadoop\_client.sh,⽤⼾可以利⽤此脚本进⾏客⼾端的安装部署 也可以通过外⽹下载最新版本安装脚本 Hadoop开发指南 Copyright © 2012-2021 UCloud 优刻得 1/12 wget http://new-uhadoop.cn-bj.ufileos.com/install_uhadoop_client_new root@master_ip:/usr/java /usr/ 安装hadoop客⼾端,从集群master1节点上拷⻉安装包到UHost: 注解: hadoop-为hadoop具体对应的版本,可查看master的/home/hadoop/bin的软连接指向的版本,下同 Hadoop开发指南 Copyright © 2012-2021 UCloud 优刻得 2/12 #hadoop scp -r root@master_ip:/home/hadoop/0 码力 | 12 页 | 135.94 KB | 1 年前3大数据集成与Hadoop - IBM
IBM软件 2014 年 9 月 大数据集成与 Hadoop 可最大限度降低Hadoop计划风险并提高ROI的最佳实践 2 大数据集成与 Hadoop 简介 Apache Hadoop技术通过支持新的流程和架构,不断改进 大数据措施的经济性和活力,这样不仅有助于削减成本、增加 收益,而且还能树立竞争优势。Hadoop是一个开源软件项目, 支持在多个商业服务器群集间分散处理和存储大型数据集, 要的Hadoop组件包括Hadoop Distributed File System (用于存储大型文件)和Hadoop分布式并行处理框架(称为 MapReduce)。 但是,Hadoop基础架构本身并没有提供完整的大数据集成解 决方案,摆在人们面前的既有挑战,也有机遇,只有处理好这些 问题,才能安享各项优势,最大限度提高投资回报率 (ROI)。 大数据集成对于Hadoop措施的重要性 大数据集成对于Hadoop措施的重要性 Hadoop的迅速崛起推动企业在如何抽取、管理、转换、存储和 分析大数据方面实现了范式转变。无论是要更深入的分析,还是 希望获得更出色的洞察、新产品、新服务以及更高的服务水平,都 可以通过这项技术一一实现,从而大幅降低成本并创造新的 收入。 依靠收集、移动、转换、清除、集成、治理、探索以及分析多种 不同来源的大量不同类型的数据来实现大数据与Hadoop项 目。实现所有这些目标需要运用富有弹性的端到端信息集成0 码力 | 16 页 | 1.23 MB | 1 年前3通过Oracle 并行处理集成 Hadoop 数据
2011 年 1 月 通过 Oracle 并行处理集成 Hadoop 数据 1 Oracle 白皮书 — 通过 Oracle 并行处理集成 Hadoop 数据 引言 许多垂直行业都在 本文详细介绍了如何从 Oracle 数据库访问存储在 Hadoop 集群里的数据。请注 意,本文选择了 Hadoop 和 HDFS 作为示例,但这里的策略同样适用于其他分 布式存储机制。本文中介绍了各种访问方法,还通过一个具体示例说明了其中一 种访问方法的实现。 2 Oracle 白皮书 — 通过 Oracle 并行处理集成 Hadoop 数据 外部 Hadoop 数据的访问方法 要从 Oracle 数据库里访问某个文件系统中的外部文件或外部数据,最简单的方法莫过于使用 外部表。请参阅这里了解外部表。 外部表以表的形式展示存储在文件系统中的数据,并且可在 SQL 查询中完全透明地使用。 因此,可以考虑用外部表从 Oracle 数据库中直接访问 HDFS(Hadoop 文件系统)中存储的 数据0 码力 | 21 页 | 1.03 MB | 1 年前3Spark 简介以及与 Hadoop 的对比
Spark 简介以及与 Hadoop 的对比 1 Spark 简介 1.1 Spark 概述 Spark 是 UC Berkeley AMP lab 所开源的类 Hadoop MapReduce 的通用的并行计算框 架,Spark 基于 map reduce 算法实现的分布式计算,拥有 Hadoop MapReduce 所具有的 优点;但不同于 MapReduce 的是 Job 的分区数据。 2 Spark 与 Hadoop 对比 2.1 快速 Spark 的中间数据放到内存中,对于迭代运算效率更高。Spark 更适合于迭代运算比较多 的 ML 和 DM 运算。因为在 Spark 里面,有 RDD 的抽象概念。 2.2 灵活 1. Spark 提供的数据集操作类型有很多种,不像 Hadoop 只提供了 Map 和 Reduce 两种操 actions 操作。 2. 这些多种多样的数据集操作类型,给给开发上层应用的用户提供了方便。各个处理节点 之间的通信模型不再像 Hadoop 那样就是唯一的 Data Shuffle 一种模式。用户可以命名, 物化,控制中间结果的存储、分区等。可以说编程模型比 Hadoop 更灵活。 3. 由于 RDD 的特性,Spark 不适用那种异步细粒度更新状态的应用,例如 web 服务的存 储或者是增量的0 码力 | 3 页 | 172.14 KB | 1 年前3大数据时代的Intel之Hadoop
大数据时代的Intel乊Hadoop 系统方案架构师:朱海峰 英特尔®中国于计算创新中心 2013.4 北京 法律声明 本文所提供乊信息均不英特尔® 产品相关。本文丌代表英特尔公司戒其它机构向仸何人明确戒隐含地授予仸何知识产权。除相关产品的英特尔销售条款不条件中列明乊担保条件以外,英特 尔公司丌对销售和/戒使用英特尔产品做出其它仸何明确戒隐含的担保,包括对适用亍特定用途、适销 • Intel Hadoop商业发行版 • 对象存储技术 Intel的角色 • 面向大数据应用,在计算、存储和网络方面提供更快更为 高效的架构级别的优化方案 • 持续投入大数据应用开发,促迚软件系统和服务的丌断优 化和创新 • 推迚终端设备和传感器的智能化,构建亏联、可管理的和 安全的分布式架构 软硬结合 Intel Hadoop商业发行版 优化的大数据处理软件栈 优化的大数据处理软件栈 稳定的企业级hadoop发行版 利用硬件新技术迚行优化 HBase改迚和创新,为Hadoop提供实时数据处理能力 针对行业的功能增强,应对丌同行业的大数据挑戓 Hive 0.9.0 交互式数据仓库 Sqoop 1.4.1 关系数据ETL工具 Flume 1.1.0 日志收集工具 Intel Hadoop Manager 2.2 安装、部署、配置、监控、告警和访问控制0 码力 | 36 页 | 2.50 MB | 1 年前3Hadoop 迁移到阿里云MaxCompute 技术方案
Hadoop 迁移到阿里云 MaxCompute 技术方案 (V2.8.5) 编写人:MaxCompute 产品团队 日 期:2019.05 Alibaba Cloud MaxCompute 解决方案 2 目录 1 概要 .................................. ........ 6 2 阿里云大数据与开源生态对比 .................................................................................................................. 7 2.1 Hadoop 及开源生态与阿里云大数据生态对比 ...................... ........................................................................... 9 2.1.4 阿里云大数据与 Hadoop 生态的产品映射 ......................................................................... 9 2.2 MaxCompute0 码力 | 59 页 | 4.33 MB | 1 年前3尚硅谷大数据技术之Hadoop(入门)
尚硅谷大数据技术之 Hadoop(入门) ————————————————————————————— 更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网 尚硅谷大数据技术之 Hadoop(入门) (作者:尚硅谷大数据研发部) 版本:V3.3 第 1 章 Hadoop 概述 1.1 Hadoop 是什么 Hadoop是什么 1)Hadoop是一个由Apache基金会所开发的分布式系统基础架构。 2)主要解决,海量数据的存储和海量数据的分析计算问题。 3)广义上来说,Hadoop通常是指一个更广泛的概念——Hadoop生态圈。 1.2 Hadoop 发展历史(了解) Hadoop发展历史 1)Hadoop创始人Doug Cutting,为了实现与Google类似的全文搜索功能,他在Lucene框架基础上进行优 化升级,查询引擎和索引引擎。 Hadoop创始人Doug Cutting 2)2001年年底Lucene成为Apache基金会的一个子项目。 3)对于海量数据的场景,Lucene框架面对与Google同样的困难,存储海量数据困难,检索海量速度慢。 4)学习和模仿Google解决这些问题的办法 :微型版Nutch。 5)可以说Google是Hadoop的思想之源(Google在大数据方面的三篇论文)0 码力 | 35 页 | 1.70 MB | 1 年前3
共 182 条
- 1
- 2
- 3
- 4
- 5
- 6
- 19