积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(312)VirtualBox(113)Apache Kyuubi(44)Pandas(32)机器学习(21)OpenShift(21)Kubernetes(15)Istio(15)Apache Flink(12)rancher(7)

语言

全部英语(264)中文(简体)(43)英语(4)中文(简体)(1)

格式

全部PDF文档 PDF(286)其他文档 其他(24)PPT文档 PPT(2)
 
本次搜索耗时 0.440 秒,为您找到相关结果约 312 个.
  • 全部
  • 云计算&大数据
  • VirtualBox
  • Apache Kyuubi
  • Pandas
  • 机器学习
  • OpenShift
  • Kubernetes
  • Istio
  • Apache Flink
  • rancher
  • 全部
  • 英语
  • 中文(简体)
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Istio 2021 Roadmap A heartwarming work of staggering predictability

    #IstioCon Istio 2021 Roadmap A heartwarming work of staggering predictability Neeraj Poddar (Co-founder & Chief Architect, Aspen Mesh) Louis Ryan (Principal Engineer, Google) #IstioCon Highlights
    0 码力 | 17 页 | 633.89 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    are just a small subset of the available techniques. It is often tedious to decide which ones would work for a problem even for experts. The simplest approach is to try and see which ones produce the best like learning rate, batch size or momentum are geared towards model convergence. However, they all work in conjunction to produce better models faster. Let's say that we are optimizing the validation loss than the model with 20% dropout rate and achieves a better accuracy as well. Table 7-2 shows a breakdown of trials for this run. Note that the bracket ids are in reverse order in contrast to the example
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 Istio Security Assessment

    26dacdde40968a37ba9eaa864d40e45051ec5448 Finding Breakdown Critical issues 0 High issues 4 Medium issues 5 Low issues 7 Informational issues 2 Total issues 18 Category Breakdown Access Controls 7 Configuration Configuration 5 Cryptography 1 Data Exposure 3 Data Validation 2 Component Breakdown Istio 10 Istio Sidecar 3 Istioctl 2 Pilot 3 Key Critical High Medium Low Informational 3 | Google Istio Security Assessment security choices are relevant, standards for hardening, and clear direction on which features should work with others to provide the most secure environment. The gaps in documentation include: • /docs/
    0 码力 | 51 页 | 849.66 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    contrast augmentation, color correction, hue augmentation, saturation, cutout, etc. Figure 3-7 shows a breakdown of the contributions of various transformations on the validation accuracy of a model trained on print(val_ds.as_numpy_iterator().next()[0].shape) (264, 264, 3) (264, 264, 3) Our dataset is ready. Let’s work on the model. We use a pre-trained ResNet50 model with the top (softmax) layer replaced with a new have multiple models which also multiplies our deployment costs. Hinton et al.18, in their seminal work explored how smaller student networks can be taught to extract “dark knowledge” from single or ensembles
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 Oracle VM VirtualBox 7.1.0 Programming Guide and Reference

    make run16 if you’re on a Java 6 system; on a Java 5 system, run make run15 instead. This should work on all Unix-like systems such as Linux and Solaris. For Windows systems, use commands similar to what of the VirtualBox web service, from which all other functionality can be derived. If logon doesn’t work, please take another look at chapter 1.4.2, Authenticating at web service logon, page 5. 2.1.1.4 state of a web service between function calls. In particular, this normally means that you cannot work on objects in one method call that were created by another call. • By contrast, the VirtualBox Main
    0 码力 | 543 页 | 3.08 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.0.0

    [11]: s Out[11]: 0 abc 1 2 def Length: 3, dtype: string The usual string accessor methods work. Where appropriate, the return type of the Series or columns of a DataFrame will also have string throughout the development of pandas. Optional libraries below the lowest tested version may still work, but are not considered supported. 16 Chapter 1. What’s new in 1.0.0 (January 29, 2020) pandas: extension dtype columns (GH28668) • Categorical.searchsorted() and CategoricalIndex.searchsorted() now work on un- ordered categoricals also (GH21667) • Added test to assert roundtripping to parquet with DataFrame
    0 码力 | 3015 页 | 10.78 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.1.1

    no need to loop over all rows of your data table to do calculations. Data manipulations on a column work elementwise. Adding a column to a DataFrame based on existing data in other columns is straightforward split-apply-combine approach. To introduction tutorial To user guide Straight to tutorial... Change the structure of your data table in multiple ways. You can melt() your data table from wide to long/tidy form you install BeautifulSoup4 you must install either lxml or html5lib or both. read_html() will not work with only BeautifulSoup4 installed. • You are highly encouraged to read HTML Table Parsing gotchas
    0 码力 | 3231 页 | 10.87 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.1.0

    no need to loop over all rows of your data table to do calculations. Data manipulations on a column work elementwise. Adding a column to a DataFrame based on existing data in other columns is straightforward split-apply-combine approach. To introduction tutorial To user guide Straight to tutorial... Change the structure of your data table in multiple ways. You can melt() your data table from wide to long/tidy form you install BeautifulSoup4 you must install either lxml or html5lib or both. read_html() will not work with only BeautifulSoup4 installed. • You are highly encouraged to read HTML Table Parsing gotchas
    0 码力 | 3229 页 | 10.87 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.0

    no need to loop over all rows of your data table to do calculations. Data manipulations on a column work elementwise. Adding a column to a DataFrame based on existing data in other columns is straightforward split-apply-combine approach. To introduction tutorial To user guide Straight to tutorial... Change the structure of your data table in multiple ways. You can melt() your data table from wide to long/tidy form you install BeautifulSoup4 you must install either lxml or html5lib or both. read_html() will not work with only BeautifulSoup4 installed. • You are highly encouraged to read HTML Table Parsing gotchas
    0 码力 | 3091 页 | 10.16 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.0.4

    no need to loop over all rows of your data table to do calculations. Data manipulations on a column work elementwise. Adding a column to a DataFrame based on existing data in other columns is straightforward split-apply-combine approach. To introduction tutorial To user guide Straight to tutorial... Change the structure of your data table in multiple ways. You can melt() your data table from wide to long/tidy form you install BeautifulSoup4 you must install either lxml or html5lib or both. read_html() will not work with only BeautifulSoup4 installed. • You are highly encouraged to read HTML Table Parsing gotchas
    0 码力 | 3081 页 | 10.24 MB | 1 年前
    3
共 312 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 32
前往
页
相关搜索词
d1kIstio2021RoadmapNeerajLouisEfficientDeepLearningBookEDLChapterAutomationIstioSecurityAssessmentTechniquesOracleVMVirtualBox7.1ProgrammingGuideandReferencepandaspowerfulPythondataanalysistoolkit1.01.1
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩