积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(264)VirtualBox(112)Apache Kyuubi(44)Pandas(32)Kubernetes(11)OpenShift(11)Apache Flink(11)机器学习(9)rancher(6)云原生CNCF(5)

语言

全部英语(237)中文(简体)(20)英语(3)西班牙语(1)中文(繁体)(1)中文(简体)(1)

格式

全部PDF文档 PDF(239)其他文档 其他(24)PPT文档 PPT(1)
 
本次搜索耗时 0.430 秒,为您找到相关结果约 264 个.
  • 全部
  • 云计算&大数据
  • VirtualBox
  • Apache Kyuubi
  • Pandas
  • Kubernetes
  • OpenShift
  • Apache Flink
  • 机器学习
  • rancher
  • 云原生CNCF
  • 全部
  • 英语
  • 中文(简体)
  • 英语
  • 西班牙语
  • 中文(繁体)
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 PyTorch Release Notes

    AMP will select an optimal set of operations to cast to FP16. FP16 operations require 2X reduced memory bandwidth (resulting in a 2X speedup for bandwidth-bound operations like most pointwise ops) and 2X AMP will select an optimal set of operations to cast to FP16. FP16 operations require 2X reduced memory bandwidth (resulting in a 2X speedup for bandwidth-bound operations like most pointwise ops) and 2X full iteration CUDA graph capture including gradient AllReduce, Optimizer, and Parameter AllGather operations could fail with a CUDA error. We recommend reducing the scope of the CUDA graph capture as a workaround
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    live stream into batches of X seconds. • Treats each batch as RDDs and processes them using RDD operations. • Discretized Stream Processing (DStream) 7 / 79 Spark Streaming ▶ Run a streaming computation live stream into batches of X seconds. • Treats each batch as RDDs and processes them using RDD operations. • Discretized Stream Processing (DStream) 7 / 79 Spark Streaming ▶ Run a streaming computation live stream into batches of X seconds. • Treats each batch as RDDs and processes them using RDD operations. • Discretized Stream Processing (DStream) 7 / 79 DStream (1/2) ▶ DStream: sequence of RDDs
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 PyFlink 1.15 Documentation

    users to execute Python native functions. See also the latest User- defined Functions and Row-based Operations. The first example is UDFs used in Table API & SQL [20]: from pyflink.table.udf import udf # sql_query("SELECT plus_one(id) FROM {}".format(table)).to_pandas() Another example is UDFs used in Row-based Operations [23]: from pyflink.common.types import Row @udf(result_type=DataTypes.ROW([DataTypes.FIELD("id" QueryOperationConverter$SingleRelVisitor. ˓→visit(QueryOperationConverter.java:154) at org.apache.flink.table.operations.CatalogQueryOperation. ˓→accept(CatalogQueryOperation.java:68) at org.apache.flink.table.planner
    0 码力 | 36 页 | 266.77 KB | 1 年前
    3
  • pdf文档 PyFlink 1.16 Documentation

    users to execute Python native functions. See also the latest User- defined Functions and Row-based Operations. The first example is UDFs used in Table API & SQL [20]: from pyflink.table.udf import udf # sql_query("SELECT plus_one(id) FROM {}".format(table)).to_pandas() Another example is UDFs used in Row-based Operations [23]: from pyflink.common.types import Row @udf(result_type=DataTypes.ROW([DataTypes.FIELD("id" QueryOperationConverter$SingleRelVisitor. ˓→visit(QueryOperationConverter.java:154) at org.apache.flink.table.operations.CatalogQueryOperation. ˓→accept(CatalogQueryOperation.java:68) at org.apache.flink.table.planner
    0 码力 | 36 页 | 266.80 KB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.20.3

    Formatting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.3.2.12 Window Binary Corr/Cov operations return a MultiIndex DataFrame . . . . . . . . 31 1.3.2.13 HDFStore where string comparison . . . . . . . . . . . . . . . . . . . . . . . . . 74 1.6.2.8 Index + / - no longer used for set operations . . . . . . . . . . . . . . . . . . . . . 76 1.6.2.9 Index.difference and .symmetric_difference . . . . . . . . . . . . . . . . . . . 93 1.7.1.2 .groupby(..) syntax with window and resample operations . . . . . . . . . . . 93 1.7.1.3 Method chaininng improvements . . . . . . . . . . . . . . .
    0 码力 | 2045 页 | 9.18 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.20.2

    Formatting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.2.2.12 Window Binary Corr/Cov operations return a MultiIndex DataFrame . . . . . . . . 29 1.2.2.13 HDFStore where string comparison . . . . . . . . . . . . . . . . . . . . . . . . . 72 1.5.2.8 Index + / - no longer used for set operations . . . . . . . . . . . . . . . . . . . . . 74 1.5.2.9 Index.difference and .symmetric_difference . . . . . . . . . . . . . . . . . . . 91 1.6.1.2 .groupby(..) syntax with window and resample operations . . . . . . . . . . . 91 1.6.1.3 Method chaininng improvements . . . . . . . . . . . . . . .
    0 码力 | 1907 页 | 7.83 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.3.4

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 2.1.5 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 2 . . . . . . . . 199 2.3.3 Accelerated operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 2.3.4 Flexible binary operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 651 2.12.7 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653 2
    0 码力 | 3605 页 | 14.68 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.3.2

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 2.1.5 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 2 . . . . . . . . 192 2.3.3 Accelerated operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 2.3.4 Flexible binary operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 622 2.12.7 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625 2
    0 码力 | 3509 页 | 14.01 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.3.3

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 2.1.5 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 2 . . . . . . . . 199 2.3.3 Accelerated operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 2.3.4 Flexible binary operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 650 2.12.7 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652 2
    0 码力 | 3603 页 | 14.65 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.12

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.5 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 8.3 Accelerated operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 8.4 Flexible binary operations . . . . . . . . . . . . . . . . . you in computations • Powerful, flexible group by functionality to perform split-apply-combine operations on data sets, for both ag- gregating and transforming data • Make it easy to convert ragged, differently-indexed
    0 码力 | 657 页 | 3.58 MB | 1 年前
    3
共 264 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 27
前往
页
相关搜索词
PyTorchReleaseNotesScalableStreamProcessingSparkStreamingandFlinkPy1.15Documentation1.16pandaspowerfulPythondataanalysistoolkit0.201.30.12
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩