PyTorch Release Notes
AMP will select an optimal set of operations to cast to FP16. FP16 operations require 2X reduced memory bandwidth (resulting in a 2X speedup for bandwidth-bound operations like most pointwise ops) and 2X AMP will select an optimal set of operations to cast to FP16. FP16 operations require 2X reduced memory bandwidth (resulting in a 2X speedup for bandwidth-bound operations like most pointwise ops) and 2X full iteration CUDA graph capture including gradient AllReduce, Optimizer, and Parameter AllGather operations could fail with a CUDA error. We recommend reducing the scope of the CUDA graph capture as a workaround0 码力 | 365 页 | 2.94 MB | 1 年前3Scalable Stream Processing - Spark Streaming and Flink
live stream into batches of X seconds. • Treats each batch as RDDs and processes them using RDD operations. • Discretized Stream Processing (DStream) 7 / 79 Spark Streaming ▶ Run a streaming computation live stream into batches of X seconds. • Treats each batch as RDDs and processes them using RDD operations. • Discretized Stream Processing (DStream) 7 / 79 Spark Streaming ▶ Run a streaming computation live stream into batches of X seconds. • Treats each batch as RDDs and processes them using RDD operations. • Discretized Stream Processing (DStream) 7 / 79 DStream (1/2) ▶ DStream: sequence of RDDs0 码力 | 113 页 | 1.22 MB | 1 年前3PyFlink 1.15 Documentation
users to execute Python native functions. See also the latest User- defined Functions and Row-based Operations. The first example is UDFs used in Table API & SQL [20]: from pyflink.table.udf import udf # sql_query("SELECT plus_one(id) FROM {}".format(table)).to_pandas() Another example is UDFs used in Row-based Operations [23]: from pyflink.common.types import Row @udf(result_type=DataTypes.ROW([DataTypes.FIELD("id" QueryOperationConverter$SingleRelVisitor. ˓→visit(QueryOperationConverter.java:154) at org.apache.flink.table.operations.CatalogQueryOperation. ˓→accept(CatalogQueryOperation.java:68) at org.apache.flink.table.planner0 码力 | 36 页 | 266.77 KB | 1 年前3PyFlink 1.16 Documentation
users to execute Python native functions. See also the latest User- defined Functions and Row-based Operations. The first example is UDFs used in Table API & SQL [20]: from pyflink.table.udf import udf # sql_query("SELECT plus_one(id) FROM {}".format(table)).to_pandas() Another example is UDFs used in Row-based Operations [23]: from pyflink.common.types import Row @udf(result_type=DataTypes.ROW([DataTypes.FIELD("id" QueryOperationConverter$SingleRelVisitor. ˓→visit(QueryOperationConverter.java:154) at org.apache.flink.table.operations.CatalogQueryOperation. ˓→accept(CatalogQueryOperation.java:68) at org.apache.flink.table.planner0 码力 | 36 页 | 266.80 KB | 1 年前3pandas: powerful Python data analysis toolkit - 0.20.3
Formatting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.3.2.12 Window Binary Corr/Cov operations return a MultiIndex DataFrame . . . . . . . . 31 1.3.2.13 HDFStore where string comparison . . . . . . . . . . . . . . . . . . . . . . . . . 74 1.6.2.8 Index + / - no longer used for set operations . . . . . . . . . . . . . . . . . . . . . 76 1.6.2.9 Index.difference and .symmetric_difference . . . . . . . . . . . . . . . . . . . 93 1.7.1.2 .groupby(..) syntax with window and resample operations . . . . . . . . . . . 93 1.7.1.3 Method chaininng improvements . . . . . . . . . . . . . . .0 码力 | 2045 页 | 9.18 MB | 1 年前3pandas: powerful Python data analysis toolkit - 0.20.2
Formatting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.2.2.12 Window Binary Corr/Cov operations return a MultiIndex DataFrame . . . . . . . . 29 1.2.2.13 HDFStore where string comparison . . . . . . . . . . . . . . . . . . . . . . . . . 72 1.5.2.8 Index + / - no longer used for set operations . . . . . . . . . . . . . . . . . . . . . 74 1.5.2.9 Index.difference and .symmetric_difference . . . . . . . . . . . . . . . . . . . 91 1.6.1.2 .groupby(..) syntax with window and resample operations . . . . . . . . . . . 91 1.6.1.3 Method chaininng improvements . . . . . . . . . . . . . . .0 码力 | 1907 页 | 7.83 MB | 1 年前3pandas: powerful Python data analysis toolkit - 1.3.4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 2.1.5 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 2 . . . . . . . . 199 2.3.3 Accelerated operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 2.3.4 Flexible binary operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 651 2.12.7 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653 20 码力 | 3605 页 | 14.68 MB | 1 年前3pandas: powerful Python data analysis toolkit - 1.3.2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 2.1.5 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 2 . . . . . . . . 192 2.3.3 Accelerated operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 2.3.4 Flexible binary operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 622 2.12.7 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625 20 码力 | 3509 页 | 14.01 MB | 1 年前3pandas: powerful Python data analysis toolkit - 1.3.3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 2.1.5 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 2 . . . . . . . . 199 2.3.3 Accelerated operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 2.3.4 Flexible binary operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 650 2.12.7 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652 20 码力 | 3603 页 | 14.65 MB | 1 年前3pandas: powerful Python data analysis toolkit - 0.12
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.5 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 8.3 Accelerated operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 8.4 Flexible binary operations . . . . . . . . . . . . . . . . . you in computations • Powerful, flexible group by functionality to perform split-apply-combine operations on data sets, for both ag- gregating and transforming data • Make it easy to convert ragged, differently-indexed0 码力 | 657 页 | 3.58 MB | 1 年前3
共 264 条
- 1
- 2
- 3
- 4
- 5
- 6
- 27