积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(406)VirtualBox(113)Apache Kyuubi(44)机器学习(40)OpenShift(38)Pandas(32)Kubernetes(26)Apache Flink(24)Istio(20)rancher(12)

语言

全部英语(293)中文(简体)(102)英语(5)中文(简体)(4)中文(繁体)(2)

格式

全部PDF文档 PDF(380)其他文档 其他(24)DOC文档 DOC(1)PPT文档 PPT(1)
 
本次搜索耗时 0.014 秒,为您找到相关结果约 406 个.
  • 全部
  • 云计算&大数据
  • VirtualBox
  • Apache Kyuubi
  • 机器学习
  • OpenShift
  • Pandas
  • Kubernetes
  • Apache Flink
  • Istio
  • rancher
  • 全部
  • 英语
  • 中文(简体)
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • DOC文档 DOC
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Notions of time and progress - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Vasiliki (Vasia) Kalavri
 vkalavri@bu.edu CS 591 K1: Data Stream Processing and Analytics Spring 2020 2/06: Notions of time and progress Vasiliki Kalavri | Boston University 2020 Mobile game application 4 Vasiliki Kalavri | Boston University 2020 • Processing time • the time of the local clock where an event is being processed • a processing-time window wouldn’t account for game activity while in the tunnel • results depend on the processing speed and aren’t deterministic • Event time • the time when an event actually happened • an event-time window would give you the extra life •
    0 码力 | 22 页 | 2.22 MB | 1 年前
    3
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Boston University 2020 CS 591 K1: Data Stream Processing and Analytics Vasiliki (Vasia) Kalavri
 vkalavri@bu.edu Spring 2020 1/23: Stream Processing Fundamentals Vasiliki Kalavri | Boston University traditional data processing applications, we know the entire dataset in advance, e.g. tables stored in a database. A data stream is a data set that is produced incrementally over time, rather than being being available in full before its processing begins. • Data streams are high-volume, real-time data that might be unbounded • we cannot store the entire stream in an accessible way • we have to
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    Scalable Stream Processing - Spark Streaming and Flink Amir H. Payberah payberah@kth.se 05/10/2018 The Course Web Page https://id2221kth.github.io 1 / 79 Where Are We? 2 / 79 Stream Processing Systems Design Design Issues ▶ Continuous vs. micro-batch processing ▶ Record-at-a-Time vs. declarative APIs 3 / 79 Outline ▶ Spark streaming ▶ Flink 4 / 79 Spark Streaming 5 / 79 Contribution ▶ Design issues issues • Continuous vs. micro-batch processing • Record-at-a-Time vs. declarative APIs 6 / 79 Spark Streaming ▶ Run a streaming computation as a series of very small, deterministic batch jobs. • Chops
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 【04 RocketMQ 王鑫】Stream Processing with Apache RocketMQ and Apache Flink

    0 码力 | 30 页 | 24.22 MB | 1 年前
    3
  • pdf文档 Skew mitigation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    ??? Vasiliki Kalavri | Boston University 2020 CS 591 K1: Data Stream Processing and Analytics Vasiliki (Vasia) Kalavri
 vkalavri@bu.edu Spring 2020 4/16: Skew mitigation ??? Vasiliki Kalavri | Uddin Nasir et. al. The power of both choices: Practical load balancing for distributed stream processing engines. ICDE 2015. • Mitzenmacher, Michael. The power of two choices in randomized load balancing
    0 码力 | 31 页 | 1.47 MB | 1 年前
    3
  • pdf文档 State management - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Vasiliki Kalavri | Boston University 2020 CS 591 K1: Data Stream Processing and Analytics Vasiliki (Vasia) Kalavri
 vkalavri@bu.edu Spring 2020 2/25: State Management Vasiliki Kalavri | Boston single key-value into the DB • Iterator/RangeScan: seek to a specified key and then scan one key at a time from that point (keys are sorted) • Merge: a lazy read-modify-write RocksDB 11 Vasiliki Kalavri operator. Keyed state can only be used by functions that are applied on a KeyedStream: • When the processing method of a function with keyed input is called, Flink’s runtime automatically puts all keyed
    0 码力 | 24 页 | 914.13 KB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Boston University 2020 CS 591 K1: Data Stream Processing and Analytics Vasiliki (Vasia) Kalavri
 vkalavri@bu.edu Spring 2020 4/14: Stream processing optimizations ??? Vasiliki Kalavri | Boston University continuously along edges Operators • receive one or more input streams • perform tuple-at-a-time, window, logic, pattern matching transformations • output one or more streams of possibly different 1 • a filter operator typically has selectivity < 1 Is selectivity always known at development time? ??? Vasiliki Kalavri | Boston University 2020 Types of Parallelism 7 B A C A B D A A B
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 Windows and triggers - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Vasiliki Kalavri | Boston University 2020 CS 591 K1: Data Stream Processing and Analytics Vasiliki (Vasia) Kalavri
 vkalavri@bu.edu Spring 2020 2/11: Windows and Triggers Vasiliki Kalavri | Boston • e.g. joins, holistic aggregates • Compute on most recent events only • when providing real-time traffic information, you probably don't care about an accident that happened 2 hours ago • Recent 
 val maxTemp = sensorData
 .map(r => Reading(r.id,r.time,(r.temp-32)*(5.0/9.0)))
 .keyBy(_.id) .timeWindow(Time.minutes(1)) .max("temp")
 } } 3 Example: Window sensor
    0 码力 | 35 页 | 444.84 KB | 1 年前
    3
  • pdf文档 Course introduction - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Vasiliki Kalavri | Boston University 2020 CS 591 K1: Data Stream Processing and Analytics Vasiliki (Vasia) Kalavri
 vkalavri@bu.edu Spring 2020 1/21: Introduction Vasiliki Kalavri | Boston University Information • Instructor: Vasiliki Kalavri • Office: MCS 206 • Contact: vkalavri@bu.edu • Course Time & Location: Tue,Thu 9:30-10:45, MCS B33 • Office Hours: Tue,Thu 11:00-12:30, MCS 206 2 Vasiliki course, you will hopefully: • know when to use stream processing vs other technology • be able to comprehensively compare features and processing guarantees of streaming systems • be proficient in using
    0 码力 | 34 页 | 2.53 MB | 1 年前
    3
  • pdf文档 Cardinality and frequency estimation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    ??? Vasiliki Kalavri | Boston University 2020 CS 591 K1: Data Stream Processing and Analytics Vasiliki (Vasia) Kalavri
 vkalavri@bu.edu Spring 2020 4/23: Cardinality and frequency estimation corresponding to each of the m bits in the filter: • Increment the corresponding counter every time an element is added • To delete an element, decrease its corresponding counters and unset the corresponding recommended number of counters is ϵ δ ϵ ⋅ n 1 − δ p = ⌈ln 1 δ ⌉ m = ⌈2.71828 ϵ ⌉ Error and space/time trade-offs ??? Vasiliki Kalavri | Boston University 2020 27 Space requirements ??? Vasiliki Kalavri
    0 码力 | 69 页 | 630.01 KB | 1 年前
    3
共 406 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 41
前往
页
相关搜索词
NotionsoftimeandprogressCS591K1DataStreamProcessingAnalyticsSpring2020processingfundamentalsScalableSparkStreamingFlink04RocketMQ王鑫withApacheSkewmitigationStatemanagementoptimizationsWindowstriggersCourseintroductionCardinalityfrequencyestimation
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩