pandas: powerful Python data analysis toolkit - 0.13.1
powerful Python data analysis toolkit, Release 0.13.1 • plot(kind=’kde’) now accepts the optional parameters bw_method and ind, passed to scipy.stats.gaussian_kde() (for scipy >= 0.11.0) to set the bandwidth pandas: powerful Python data analysis toolkit, Release 0.13.1 • pd.melt() now accepts the optional parameters var_name and value_name to specify custom column names of the returned DataFrame. • pd.set_option() method is Panel.from_dict, which takes a dictionary of DataFrames as above, and the following named parameters: Parameter Default Description intersect False drops elements whose indices do not align orient0 码力 | 1219 页 | 4.81 MB | 1 年前3pandas: powerful Python data analysis toolkit - 0.14.0
Out[85]: numpy.timedelta64(2678400000000000,’ns’) • plot(kind=’kde’) now accepts the optional parameters bw_method and ind, passed to scipy.stats.gaussian_kde() (for scipy >= 0.11.0) to set the bandwidth pandas: powerful Python data analysis toolkit, Release 0.14.0 • pd.melt() now accepts the optional parameters var_name and value_name to specify custom column names of the returned DataFrame. • pd.set_option() method is Panel.from_dict, which takes a dictionary of DataFrames as above, and the following named parameters: 192 Chapter 8. Intro to Data Structures pandas: powerful Python data analysis toolkit, Release0 码力 | 1349 页 | 7.67 MB | 1 年前3pandas: powerful Python data analysis toolkit - 0.15
and Series.any now support the level and skipna parameters. Series.all, Series.any, Index.all, and Index.any no longer support the out and keepdims parameters, which existed for compatibility with ndarray engine, dtype={’Col_1’: String}) • Series.all and Series.any now support the level and skipna parameters (GH8302): In [20]: s = pd.Series([False, True, False], index=[0, 0, 1]) In [21]: s.any(level=0) expiry date. Previously, methods returned all data for the selected month. The month and year parameters have been undeprecated and can be used to get all options data for a given month. If an expiry0 码力 | 1579 页 | 9.15 MB | 1 年前3pandas: powerful Python data analysis toolkit - 0.15.1
expiry date. Previously, methods returned all data for the selected month. The month and year parameters have been undeprecated and can be used to get all options data for a given month. 1.1. v0.15.1 to fit terminal width/height (GH7180). • Bug in OLS where running with “cluster” and “nw_lags” parameters did not work correctly, but also did not throw an error (GH5884). • Bug in DataFrame.dropna that quantile(.1) Out[85]: Timedelta(’31 days 00:00:00’) • plot(kind=’kde’) now accepts the optional parameters bw_method and ind, passed to scipy.stats.gaussian_kde() (for scipy >= 0.11.0) to set the bandwidth0 码力 | 1557 页 | 9.10 MB | 1 年前3pandas: powerful Python data analysis toolkit - 0.17.0
information, by specifying which columns/rows make up the MultiIndex in the header and index_col parameters (GH4679) See the documentation for more details. In [31]: df = pd.DataFrame([[1,2,3,4], [5,6 (new in 0.17.0) (GH11133). Removal of prior version deprecations/changes • Removal of na_last parameters from Series.order() and Series.sort(), in favor of na_position. (GH5231) • Remove of percentile_width IndexError is uncaught (GH10645 and GH10692) • Bug in read_csv when using the nrows or chunksize parameters if file contains only a header line (GH9535) • Bug in serialization of category types in HDF50 码力 | 1787 页 | 10.76 MB | 1 年前3pandas: powerful Python data analysis toolkit - 0.19.1
with duplicate columns can fail (GH14291) • pd.merge() will raise ValueError with non-boolean parameters in passed boolean type arguments (GH14434) • Bug in Timestamp where dates very near the minimum propagated to the resulting MultiIndex (GH14252) • Bug in pd.concat where axis cannot take string parameters 'rows' or 'columns' (GH14369) • Bug in pd.concat with dataframes heterogeneous in length and tuple DeprecationWarning (GH13990) Other enhancements • Timestamp can now accept positional and keyword parameters similar to datetime.datetime() (GH10758, GH11630) In [69]: pd.Timestamp(2012, 1, 1) Out[69]:0 码力 | 1943 页 | 12.06 MB | 1 年前3pandas: powerful Python data analysis toolkit - 0.19.0
DeprecationWarning (GH13990) Other enhancements • Timestamp can now accept positional and keyword parameters similar to datetime.datetime() (GH10758, GH11630) In [69]: pd.Timestamp(2012, 1, 1) Out[69]: swaplevel() for Series, DataFrame, Panel, and MultiIndex now features defaults for its first two parameters i and j that swap the two innermost levels of the index. (GH12934) • .searchsorted() for Index Exponentially weighted functions now allow specifying alpha directly (GH10789) and raise ValueError if parameters violate 0 < alpha <= 1 (GH12492) Deprecations • The functions pd.rolling_*, pd.expanding_*, and0 码力 | 1937 页 | 12.03 MB | 1 年前3pandas: powerful Python data analysis toolkit - 0.21.1
behaviors occurred when the start, end and period parameters were all specified, poten- tially leading to ambiguous ranges. When all three parameters were passed, interval_range ignored the period parameter avoid potentially ambiguous ranges, interval_range and period_range will now raise when all three parameters are passed. Previous Behavior: In [2]: pd.interval_range(start=0, end=4, periods=6) Out[2]: IntervalIndex([(0 --------------------------------------------------------------------------- ValueError: Of the three parameters: start, end, and periods, exactly two must be ˓→specified In [3]: pd.period_range(start='2017Q1'0 码力 | 2207 页 | 8.59 MB | 1 年前3pandas: powerful Python data analysis toolkit - 0.20.3
replace() now accepts a compiled regular expression as a pattern (GH15446) • Series.sort_index accepts parameters kind and na_position (GH13589, GH14444) • DataFrame and DataFrame.groupby() have gained a nunique() with duplicate columns can fail (GH14291) • pd.merge() will raise ValueError with non-boolean parameters in passed boolean type arguments (GH14434) • Bug in Timestamp where dates very near the minimum propagated to the resulting MultiIndex (GH14252) • Bug in pd.concat where axis cannot take string parameters 'rows' or 'columns' (GH14369) • Bug in pd.concat with dataframes heterogeneous in length and tuple0 码力 | 2045 页 | 9.18 MB | 1 年前3pandas: powerful Python data analysis toolkit - 0.7.1
method is Panel.from_dict, which takes a dictionary of DataFrames as above, and the following named parameters: Parameter Default Description intersect False drops elements whose indices do not align orient in MultiIndex objects (hierarchical indexes) on the index and columns of the result DataFrame Parameters data : DataFrame values : column to aggregate, optional rows : list Columns to group on the if joining indexes on indexes or indexes on a column or columns, the index will be passed on. Parameters left : DataFrame right : DataFrame how : {‘left’, ‘right’, ‘outer’, ‘inner’}, default ‘inner’0 码力 | 281 页 | 1.45 MB | 1 年前3
共 290 条
- 1
- 2
- 3
- 4
- 5
- 6
- 29