积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(6)Hadoop(6)

语言

全部中文(简体)(5)西班牙语(1)

格式

全部PDF文档 PDF(6)
 
本次搜索耗时 0.014 秒,为您找到相关结果约 6 个.
  • 全部
  • 云计算&大数据
  • Hadoop
  • 全部
  • 中文(简体)
  • 西班牙语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 尚硅谷大数据技术之Hadoop(入门)

    9)群起并测试集群 3.2.1 虚拟机准备 详见 2.1、2.2 两节。 3.2.2 编写集群分发脚本 xsync 1)scp(secure copy)安全拷贝 (1)scp 定义 scp 可以实现服务器与服务器之间的数据拷贝。(from server1 to server2) (2)基本语法 scp -r $pdir/$fname ResourceManager NodeManager NodeManager 2)配置文件说明 Hadoop 配置文件分两类:默认配置文件和自定义配置文件,只有用户想修改某一默认 配置值时,才需要修改自定义配置文件,更改相应属性值。 (1)默认配置文件: 要获取的默认文件 文件存放在 Hadoop 的 jar 包中的位置 [core-default.xml] jar/yarn-default.xml [mapred-default.xml] hadoop-mapreduce-client-core-3.1.3.jar/mapred-default.xml (2)自定义配置文件: core-site.xml、hdfs-site.xml、yarn-site.xml、mapred-site.xml 四个配置文件存放在 $HADOOP_HOME/etc/hadoop
    0 码力 | 35 页 | 1.70 MB | 1 年前
    3
  • pdf文档 Hadoop 概述

    1.4.1 Hadoop 生态系统 Apache 将他们的集成称作生态系统。字典中将生态系统定义 为:生物与它们所处环境的非生物组成部分(如空气、水、土壤和矿 产)作为一个系统进行交互的共同体。基于技术的生态系统也有类似 的属性。它是产品平台的结合,由平台拥有者所开发的核心组件所 定义,辅之以自动化(机器脱离人类自主运转)企业在其周边(围绕着 一个空间)所开发的应用程序。 以 Apache 中心。 HDP 为你提供数据平台基础以供搭建自己的 Hadoop 基础设 施,这包括一长串商业智能(BI)及其他相关供应商的列表。平台的 设计目标是支持处理多种来源及格式的数据,并且允许设计自定义 解决方案。资源列表过大,以至于无法在这里展示,强烈推荐直接 从供应商处获取此信息。选择像 HDP 这样产品的美妙之处在于他们 是 Hadoop 的主要贡献者之一。这便开启了在多种数据库资源上使 当涉及数据时,Hadoop 已经从长远角度考虑了自身的设计。它 非常适用,因为数据会随着时间持续增长。它使用已存在的企业系 统,而这些系统可扩展为 Hadoop 数据平台。公司和开源社区中的 开发人员正在设计和定义基于 Hadoop 的大规模企业数据的最佳实 践。企业以及 IT 社区都非常关注各种数据类型的可扩展性。使用 Hadoop,公司便不再局限于昂贵的企业级解决方案或者价格不菲的 数据仓库设备。
    0 码力 | 17 页 | 583.90 KB | 1 年前
    3
  • pdf文档 大数据时代的Intel之Hadoop

    造戒警示环节是否出现疏忽大意的情冴。 英特尔可以随时在丌发布声明的情冴下修改规格和产品说明。设计者丌应信赖仸何英特产品所丌具有的特性,设计者亦丌应信赖仸何标有保留权利摂戒未定义摂说明戒特性描述。英特尔保 留今后对其定义的权利,对亍因今后对其迚行修改所产生的冲突戒丌兼容性概丌负责。此处提供的信息可随时改变而毋需通知。请勿使用本信息来对某个设计做出最终决定。 文中所述产品可能包含设计缺陷戒错误 机系统具备英特尔® 虚拟化技术、支持英特尔可信执行技术的 处理器、芯片组、基本输入输出系统(BIOS)、鉴别码模块,以及英特尔戒其它兼容的虚拟机监视器。此外,英特尔可信执行技术要求系统包含可信计算组定义的 TPMv1.2 以及用亍某些 应用的特定软件。如欲了解更多信息,请访问:httP://www.intel.com/technology/security/。 †英特尔® 超线程(HT)技术要
    0 码力 | 36 页 | 2.50 MB | 1 年前
    3
  • pdf文档 大数据集成与Hadoop - IBM

    最佳实践4:在企业间实施世界级数据治理 绝大部分大型企业发现,在企业中建立数据治理机制即便是 可行的,也会十分困难。造成这种局面的原因很多。例如,企 业用户使用自己熟悉的业务术语来管理数据。时至今日,仍未 出台任何机制来定义、控制和管理此类业务术语并将其与IT 资产联系起来。 此外,无论是企业用户还是IT人员均高度信任其数据,但可能 连数据出处和/或历史都含糊不清。根本不存在通过数据沿袭 和跨工具影响分析等功能创建和管理数据治理的技术,并且 (包括Hadoop环境,但不仅限于此)创建完全受治理的数 据生命周期。以下是创建全面数据生命周期的建议步骤: • 查找:利用条款、标记和集合来查找接受治理和监管的 数据源 • 监管:为相关资产添加标记、条款和自定义属性 • 收集:通过收集来捕获资产,并开展具体的分析或治理 工作 • 协作:共享其他内容管理和治理集合 • 治理:创建并引用信息治理策略和规则;应用数据质 量、屏蔽、归档和清除操作 • 工作负载管理,为共享服务环境中的某些项目分配资源 优先级,在繁忙系统上对工作负载进行排队 • 性能分析,深入了解资源使用情况,辨别瓶颈并确定何 时系统可能需要更多的资源 • 构建工作流,其中包括通过Oozie直接按作业序列定义 的基于Hadoop的活动,以及其他数据集成活动 大数据集成的行政管理必须包括: • 基于Web的集成式安装程序,用于执行所有功能 • 高可用性配置,用于满足全天候需求 • 灵活的部署选项,用于部署新实例或展开经过优化的专
    0 码力 | 16 页 | 1.23 MB | 1 年前
    3
  • pdf文档 Hadoop 迁移到阿里云MaxCompute 技术方案

    MaxCompute 解决方案 19 4.2.3 分析任务兼容性分析及转换 利用迁移工具,可以对 Hive 作业进行兼容性分析,识别出需要修改的任务并提供针对性的 兼容性修改建议。对于用户自定义逻辑的分析任务,如 UDF、MR/Spark 作业等,我们将给出 一般性的改造建议供用户参考。 4.2.4 数据集成及工作流作业迁移 迁移工具支持对主流数据集成工具 Sqoop 进行作业的迁移转换,并自动创建 carrier 连接用户的 Hive metastore 服务,抓取用户的 Hive metadata 并在指定目录 生成一个目录,包含搬站所需的 metadata。用户可自行修改该目录下的文件来自定义搬站工 具的一些行为。 6.2.2 MaxCompute DDL 与 Hive UDTF 生成  利用第一步抓取到的 metadata,生成另一个目录,包含用于创 MaxCompute 客户需要预先开通 MaxCompute 服务,并创建好 project。 3. 根据 meta-carrier 抓取到 metadata 生成 global.json,同时用户可以编辑这个 json 来自 定义表、字段的生成规则,可编辑的部分如下: Alibaba Cloud MaxCompute 解决方案 33 【注意】:配置文件中默认 hiveCompatible 的设置是 false,如果需要把
    0 码力 | 59 页 | 4.33 MB | 1 年前
    3
  • pdf文档 尚硅谷大数据技术之Hadoop(生产调优手册)

    mapreduce.map.maxattempts每个Map Task最大重试次数,一旦重试 次数超过该值,则认为Map Task运行失败,默认值:4。根据机器 性能适当提高。 1)自定义分区,减少数据倾斜; 定义类,继承Partitioner接口,重写getPartition方法 4)在不影响业务结果的前提条件下可以提前采用Combiner job.setCombinerClass(xxxReducer ——————————————————————————————————————— 更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网 生产环境,可以直接过滤掉空值;如果想保留空值,就自定义分区,将空值加随机数打 散。最后再二次聚合。 (2)能在 map 阶段提前处理,最好先在 Map 阶段处理。如:Combiner、MapJoin (3)设置多个 reduce 个数 第
    0 码力 | 41 页 | 2.32 MB | 1 年前
    3
共 6 条
  • 1
前往
页
相关搜索词
硅谷大数技术Hadoop入门概述时代Intel集成IBM迁移阿里MaxCompute方案生产调优手册
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩