积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(11)Hadoop(11)

语言

全部中文(简体)(10)西班牙语(1)

格式

全部PDF文档 PDF(11)
 
本次搜索耗时 0.015 秒,为您找到相关结果约 11 个.
  • 全部
  • 云计算&大数据
  • Hadoop
  • 全部
  • 中文(简体)
  • 西班牙语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Hadoop 3.0以及未来

    解决方案:客户端(client-side)和服务器端(server-side)的隔离 Shell脚本的重构 - HADOOP-9902 • 脚本重构,提升可维护性和易用性 • 修正一些长期存在的bugs • 加入一些改进 • 加入一些新功能 • 带来一些不兼容性 • Shell脚本现在更易于调试: --debug Hadoop 3介绍 • Common • HDFS  纠错码(Erasure Coding) 86% RS(6,3) 3 67% RS(10,4) 4 71% 存储布局-连续和条状 小文件处理 并行IO 数据本地性 数据本地性 小文件处理 纠错码在分布式存储系统中 HDFS 性能 多个Standby Namenode Active NN Standby NN Standby NN DN DN DN DN Journal Node Journal Node Task层次Native优化 • 对map output collector的Native实现,对于shuffle密集型的task能 带来30%的性能提升。 Hadoop 的未来 HDFS的未来 • 对象存储 - HDFS-7240 • 更高性能的Namenode:更高效的内存使用,锁的改进等 • Erasure Coding的完善 YARN的未来 • 更大规模的集群支持 • 更好的资源调度,隔离和多租户 •
    0 码力 | 33 页 | 841.56 KB | 1 年前
    3
  • pdf文档 大数据集成与Hadoop - IBM

    月 大数据集成与 Hadoop 可最大限度降低Hadoop计划风险并提高ROI的最佳实践 2 大数据集成与 Hadoop 简介 Apache Hadoop技术通过支持新的流程和架构,不断改进 大数据措施的经济性和活力,这样不仅有助于削减成本、增加 收益,而且还能树立竞争优势。Hadoop是一个开源软件项目, 支持在多个商业服务器群集间分散处理和存储大型数据集, 并可根据需求变化从单一服务器扩展到数以千计的服务器。主 行相同的应用程序并且性能也会随之提高(参见图1)。 关键成功因素:避免炒作,分辨是非 在这些新兴的Hadoop市场阶段,请仔细分辨听到的所有 说明Hadoop卓尔不群的言论。充分使用Hadoop的神话 与现实之间存在巨大的反差,这在大数据集成方面表现尤为 突出。很多业界传言称,任何不可扩展的抽取、转换和加载 (ETL) 工具搭配Hadoop后都会得到高性能、高度可扩展 的数据集成平台。 的数据集成平台。 事实上,MapReduce的设计宗旨并非是对海量数据进行 高性能处理,而是为了实现细粒度的容错。这种差异可能会 使整体性能和有效性降低一个数量级乃至更多。 Hadoop Yet Another Resource Negotiator(YARN) 纳入了MapReduce的资源管理功能,并将它们内置其 中,这样需要在Hadoop群集间动态执行的其他应用即可 使用它们。结果是,这种方法可将大规模可扩展数据集成
    0 码力 | 16 页 | 1.23 MB | 1 年前
    3
  • pdf文档 大数据时代的Intel之Hadoop

    intel.com/design/literature.htm 性能测试和等级评定均使用特定的计算 机系统和/戒组件迚行测量,这些测试大致反映了英特尔® 产品的性能。系统硬件、软件设计戒配置的仸何差异都可能影响实际性能。购买者应迚行多方咨询,以评估其考虑购买的系统戒组 件的性能。如欲了解有关性能测试和英特尔产品性能的更多信息,请访问:英特尔性能挃标评测局限 此处涉及的所有产品、计算机系统、日期和数 com/technology/iamt。 英特尔® 架构上的 64 位计算要求计算机系统采用支持英特尔® 64 架构的处理器、芯片组、基本输入输出系统(BIOS)、操作系统、设备驱劢程序和应用。实际性能会根据您使用的具体 软硬件配置的丌同而有所差异。如欲了解更多信息£¬请不您的系统厂商联系。 没有仸何计算机系统能够在所有情冴下提供绝对的安全性。英特尔® 可信执行技术是由英特尔开发的一项安全技术,要求计算机系统具备英特尔® 和操作系统。实 际性能会根据您所使用的具体软硬件配置的丌同而有所差异。有关详细信息,包括哪些处理器支持英特尔 HT 技术,请访问 www.intel.com/products/ht/hyperthreading_more.htm。 英特尔® 虚拟化技术要求计算机系统具备支持英特尔虚拟化技术的英特尔® 处理器、基本输入输出系统、BIOS、虚拟机监视器、VMM、以及用亍某些应用的特定平台软件、功能、性能戒 其
    0 码力 | 36 页 | 2.50 MB | 1 年前
    3
  • pdf文档 尚硅谷大数据技术之Hadoop(生产调优手册)

    在企业中非常关心每天从 Java 后台拉取过来的数据,需要多久能上传到集群?消费者 关心多久能从 HDFS 上拉取需要的数据? 为了搞清楚 HDFS 的读写性能,生产环境上非常需要对集群进行压测。 HDFS 的读写性能主要受网络和磁盘影响比较大。为了方便测试,将 hadoop102、 hadoop103、hadoop104 虚拟机网络都设置为 100mbps。 100Mbps hadoop102 的/opt/module 目录,创建一个 [atguigu@hadoop102 software]$ python -m SimpleHTTPServer 2.1 测试 HDFS 写性能 0)写测试底层原理 1)测试内容:向 HDFS 集群写 10 个 128M 的文件 [atguigu@hadoop102 mapreduce]$ hadoop jar /opt/module/hadoop- 如果实测速度远远小于网络,并且实测速度不能满足工作需求,可以考虑采用固态硬盘 或者增加磁盘个数。 (2)如果客户端不在集群节点,那就三个副本都参与计算 2.2 测试 HDFS 读性能 1)测试内容:读取 HDFS 集群 10 个 128M 的文件 [atguigu@hadoop102 mapreduce]$ hadoop jar /opt/module/hadoop-
    0 码力 | 41 页 | 2.32 MB | 1 年前
    3
  • pdf文档 Hadoop 迁移到阿里云MaxCompute 技术方案

    使用时,存储与计算解耦,不需要仅仅为了存储扩大不必 要的计算资源 SQL MaxCompute SQL TPC-DS 100% 支持,同时语法高度兼容 Hive,有 Hive 背景开发者直接上手,特别在大数据规模下性能强大。 * 完全自主开发的 compiler,语言功能开发更灵活,迭 代快,语法语义检查更加灵活高效 * 基于代价的优化器,更智能,更强大,更适合复杂的查 询 * 基于 LLVM 的代码生成,让执行过程更高效 具或应用使用默认驱动都可以轻松地连接到 MaxCompute 项目。支持主流 BI 及 SQL 客户端工具的 连接访问,如 Tableau、帆软 BI、Navicat、SQL Workbench/J 等。 显著提升的查询性能:提升了一定数据规模下的查询性 能,查询结果秒级可见,支持 BI 分析、Ad-hoc、在线服 务等场景。 Alibaba Cloud MaxCompute 解决方案 14 Spark MaxCompute 各个 Region 的网络连通质量,以及 download/upload 的性能。  工具使用方法  Example Alibaba Cloud MaxCompute 解决方案 27  输出结果 Output: 性能测试报告 [INFO ] 2019-05-20 17:17:21.664 [main] PerformanceTester
    0 码力 | 59 页 | 4.33 MB | 1 年前
    3
  • pdf文档 银河麒麟服务器操作系统V4 Hadoop 软件适配手册

    内主流厂商的服务器整机产 品,以及达梦、金仓、神通等主要国产数据库和中创、金蝶、东方通等国产中间 件,满足虚拟化、云计算和大数据时代,服务器业务对操作系统在性能、安全性 及可扩展性等方面的需求,是一款具有高安全、高可用、高可靠、高性能的自主 可控服务器操作系统。 1.2 环境概述 服务器型号 长城信安擎天 DF720 服务器 CPU 类型 飞腾 2000+处理器 操作系统版本 分布式文件系统(Hadoop Distributed File System)的缩写, 为分布式计算存储提供了底层支持。采用 Java 语言开发,可以部署在多种普通的 廉价机器上,以集群处理数量积达到大型主机处理性能。 银河麒麟服务器操作系统 V4 hadoop 软件适配手册 3 HDFS 采用 master/slave 架构。一个 HDFS 集群包含一个单独的 NameNode 和多个 DataNode。
    0 码力 | 8 页 | 313.35 KB | 1 年前
    3
  • pdf文档 Hadoop 概述

    或者加载数据到文本文件或者基于文本文件的 Hive 表中。分区也可 以在从 Hive 分区表中查询或加载时被删减。 另一种 Oracle 解决方案 Oracle Loader for Hadoop 是一种高性能 且高效率的连接器,用于从 Hadoop 中加载数据到 Oracle 数据库。 当 Hadoop 发起数据传送时,Oracle Loader for Hadoop 将数据推送到 数据库中。如图 ORACLE 数据库 SQL 查询 在 HDFS 上就地访问和分析数据 查询和连接 HDFS 数据库中的常驻 数据 在需要时使用 SQL 加载到数据库中 自动负载均衡,从而最大限度地提高 性能 外部表 使用外部表机制 并行访问或加载 到数据库中 ORACLE 客户端 图 1-8 日志文件 更多… 文本 压缩文件 序列文件 并行负载,针对 Hadoop
    0 码力 | 17 页 | 583.90 KB | 1 年前
    3
  • pdf文档 Spark 简介以及与 Hadoop 的对比

    RDD 的部分分区数据丢失时,它可以通过 Lineage 获取足够的信息来重新运算和恢复丢失的数据分区。这种粗颗粒的数据模型,限制了 Spark 的运用场合,但同时相比细颗粒度的数据模型,也带来了性能的提升。 RDD 在 Lineage 依赖方面分为两种 Narrow Dependencies 与 Wide Dependencies 用 来解决数据容错的高效性。Narrow Dependencies
    0 码力 | 3 页 | 172.14 KB | 1 年前
    3
  • pdf文档 Hadoop开发指南

    集群的每⼀个节点,只需授权 访问启动了Httpfs服务的单台机器即可(UHadoop默认在master1:14000开启Httpfs)。由于Httpfs是在内嵌的tomcat中⼀个Web应⽤,因此性能上会受到⼀些限制。 Hadoop开发指南 Copyright © 2012-2021 UCloud 优刻得 8/12 2.3.1 上传⽂件 上传⽂件 数据准备 touch httpfs_uhadoop
    0 码力 | 12 页 | 135.94 KB | 1 年前
    3
  • pdf文档 通过Oracle 并行处理集成 Hadoop 数据

    mapper 进程处理数据,并在第 5 步写入一个队列。在本文的示例中,我们选择了一个在集群 范围内可用的队列。现在,我们只是单纯地将任何输出直接写入到队列里。您可以通过批量 处理输出并将其移入队列来提高性能。显然,您也可以选择管道和关系表等其他各种机制。 随后的第 6 步是出队过程,这是通过数据库中的表函数并行调用来实现的。这些并行调用处 理得到的数据将会提供给查询请求来使用。表函数同时处理Oracle数据库的数据和来自队列
    0 码力 | 21 页 | 1.03 MB | 1 年前
    3
共 11 条
  • 1
  • 2
前往
页
相关搜索词
Hadoop3.0以及未来大数集成IBM时代Intel硅谷技术生产调优手册迁移阿里MaxCompute方案银河麒麟服务务器服务器操作系统操作系统V4软件适配概述Spark简介对比开发指南通过Oracle并行处理并行处理数据
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩