大数据时代的Intel之Hadoop
软硬件配置的丌同而有所差异。如欲了解更多信息£¬请不您的系统厂商联系。 没有仸何计算机系统能够在所有情冴下提供绝对的安全性。英特尔® 可信执行技术是由英特尔开发的一项安全技术,要求计算机系统具备英特尔® 虚拟化技术、支持英特尔可信执行技术的 处理器、芯片组、基本输入输出系统(BIOS)、鉴别码模块,以及英特尔戒其它兼容的虚拟机监视器。此外,英特尔可信执行技术要求系统包含可信计算组定义的 TPMv1.2 以及用亍某些 有关详细信息,包括哪些处理器支持英特尔 HT 技术,请访问 www.intel.com/products/ht/hyperthreading_more.htm。 英特尔® 虚拟化技术要求计算机系统具备支持英特尔虚拟化技术的英特尔® 处理器、基本输入输出系统、BIOS、虚拟机监视器、VMM、以及用亍某些应用的特定平台软件、功能、性能戒 其它优势会根据软硬件配置的丌同而有所差异,可能需要对 BIOS 000 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Exponential Growth 内容仓库– 海量/非结构化 传统非结构化数据 传统结构化数据 企业托管服务中的数据 Linear Growth Source: IDC, 2011 Worldwide Enterprise Storage Systems0 码力 | 36 页 | 2.50 MB | 1 年前3尚硅谷大数据技术之Hadoop(入门)
1.2 Hadoop 发展历史(了解) Hadoop发展历史 1)Hadoop创始人Doug Cutting,为了实现与Google类似的全文搜索功能,他在Lucene框架基础上进行优 化升级,查询引擎和索引引擎。 Hadoop创始人Doug Cutting 2)2001年年底Lucene成为Apache基金会的一个子项目。 3)对于海量数据的场景,Lucene框架面对与Goog Distributed File System,简称 HDFS,是一个分布式文件系统。 HDFS架构概述 1)NameNode(nn):存储文件的元数据,如文件名,文件目录结构,文件属性(生成时间、副本数、 文件权限),以及每个文件的块列表和块所在的DataNode等。 2)DataNode(dn):在本地文件系统存储文件块数据,以及块数据的校验和。 3)Secondary NameNode –python 人工智能资料下载,可百度访问:尚硅谷官网 1.5.4 HDFS、YARN、MapReduce 三者关系 HDFS、YARN、MapReduce三者关系 client 作业:从100T文件中找出 ss1505_wuma.avi NodeManager Container NodeManager NodeManager App Mstr Container MapTask0 码力 | 35 页 | 1.70 MB | 1 年前3Hadoop 迁移到阿里云MaxCompute 技术方案
................................................................................ 18 4.2.2 数据迁移自动化 ................................................................................................... Alibaba Cloud MaxCompute 解决方案 6 1 概要 Hadoop 在企业构建第一代大数据平台中成为主流的技术框架,但是随着企业信息化的高 速发展,在数字化、智能化的转型过程中,Hadoop 越来越复杂的技术架构和运维成本、平台 的稳定性和安全性、资源的弹性伸缩能力都遇到了瓶颈,严重阻碍了客户数据业务的发展。随着 云计算技术的发展和普及,越来 报表等大数据应用。我们常见的大数据架构 的逻辑组件关系如下图所示: 这些逻辑组件包括: 数据源:数据源包括关系型数据库、日志文件、实时消息等。 数据存储:面向海量数据存储的分布式文件存储服务,支持 结构化数据和非结构数据数据存 储,我们也常称之为数据湖。如 HDFS、对象存储服务等。 批处理:由于大数据场景必须处理大规模的数据集,批处理往往需要从数据存储中读取大量0 码力 | 59 页 | 4.33 MB | 1 年前3Hadoop 概述
章 Hadoop 大数据解决方案 2 Common 是常见工具和库的集合,用于支持其他 Hadoop 模块。和 其他软件栈一样,这些支持文件是一款成功实现的必要条件。而众 所周知的文件系统,Hadoop 分布式文件系统,或者说 HDFS,则是 Hadoop 的核心,然而它并不会威胁到你的预算。如果要分析一组数 据,你可以使用 MapReduce 中包含的编程逻辑,它提供了在 1 Hadoop 的组件 Hadoop Common 是 Hadoop 的基础,因为它包含主要服务和基 本进程,例如对底层操作系统及其文件系统的抽象。Hadoop Common 还包含必要的 Java 归档(Java Archive,JAR)文件和用于启 动 Hadoop 的脚本。Hadoop Common 包甚至提供了源代码和文档, 以及贡献者的相关内容。如果没有 Hadoop Common,你无法运行 先熟悉此类环境。 1.1.2 Hadoop 分布式文件系统(HDFS) 在 Hadoop Common 安装完成后,是时候该研究 Hadoop Stack 的其余组件了。HDFS(Hadoop Distributed File System)提供一个分布 式文件系统,设计目标是能够运行在基础硬件组件之上。大多数企 业被其最小化的系统配置要求所吸引。此环境可以在虚拟机(Virtual0 码力 | 17 页 | 583.90 KB | 1 年前3银河麒麟服务器操作系统V4 Hadoop 软件适配手册
........................................................................................ 4 2.2 配置文件修改 ................................................................................................ ................................. 7 3 格式化并启动集群 ................................................................................................ 7 3.1 格式化 NAMENODE ................................. 力系统等国家关键行业的服务器应用领域,突出高安全性、高可用性、高效数据 处理、虚拟化等关键技术优势,针对关键业务构建的丰富高效、安全可靠的功能 特性,兼容适配长城、联想、浪潮、华为、曙光等国内主流厂商的服务器整机产 品,以及达梦、金仓、神通等主要国产数据库和中创、金蝶、东方通等国产中间 件,满足虚拟化、云计算和大数据时代,服务器业务对操作系统在性能、安全性 及可扩展性等方面的需求,是一0 码力 | 8 页 | 313.35 KB | 1 年前3大数据集成与Hadoop - IBM
支持在多个商业服务器群集间分散处理和存储大型数据集, 并可根据需求变化从单一服务器扩展到数以千计的服务器。主 要的Hadoop组件包括Hadoop Distributed File System (用于存储大型文件)和Hadoop分布式并行处理框架(称为 MapReduce)。 但是,Hadoop基础架构本身并没有提供完整的大数据集成解 决方案,摆在人们面前的既有挑战,也有机遇,只有处理好这些 问题, 复杂转换方面的限制 • 数据清理限制 • 数据库在执行某些流程时速 度较慢 优点 • 利用MapReduce MPP引擎 • 利用商业硬件和存储 • 释放数据库服务器上的容量 • 支持处理非结构化数据 • 利用Hadoop功能保留数据 (如更新和编写索引) • 实现低成本历史归档数据 缺点 • 可能需要复杂的编程工作 • MapReduce通常比并行数 据库或可扩展ETL工具速度 更慢 Hadoop 平台由以下两个主要组件构成:分布式容错文件系统 (称为Hadoop Distributed File System (HDFS))和并 行处理框架(称为MapReduce)。 HDFS平台十分适合处理大型顺序操作,其中的数据读取“切 片”通常为64MB或128MB。通常情况下,除非应用程序加载 数据来管理相关任务,否则不会对HDFS文件进行分区或排 序。即使应用程序可以对生成的数据切片进行分区和排序,0 码力 | 16 页 | 1.23 MB | 1 年前3MATLAB与Spark/Hadoop相集成:实现大数据的处理和价值挖
MATLAB访问HDFS(Hadoop分布式文件系统) ➢ 在Spark/Hadoop集群上运行MATLAB代码 ▪ 应用演示 – 汽车传感器数据分析 3 大数据概述 大数据的”4V”特征: ▪ Volumes - 数据规模,数据规模巨大 互联网、社交网络的普及,全社会的数字化转型,数据规模向PB级发展 ▪ Variety - 数据种类 ,数据种类繁多 结构化数据,半结构化数据,非结构化数据 ▪ Value – 资源调度模型,实现数据跨节点的最小移动 • Map/Reduce – 跨节点分布式计算模型 • HDFS (Hadoop Distributed File System) - 跨节点的分布式文件系统 Hadoop Ecosystem 11 Spark Spark是一个流行的开源集群计算框架 • 并行计算引擎 • 使用广义的计算模型 • 基于内存进行计算(内存计算) Spark Data Node Data Node HDFS Task Task Task Edge Node tall Split 1 Split 2 Split 3 14 Tall支持的大数据可视化 ▪ plot ▪ scatter ▪ binscatter ▪ histogram ▪ histogram2 ▪ ksdensity 15 tall 支持的大数据机器学习算法 –0 码力 | 17 页 | 1.64 MB | 1 年前3尚硅谷大数据技术之Hadoop(生产调优手册)
版本:V3.3 第 1 章 HDFS—核心参数 1.1 NameNode 内存生产配置 1)NameNode 内存计算 每个文件块大概占用 150byte,一台服务器 128G 内存为例,能存储多少文件块呢? 128 * 1024 * 1024 * 1024 / 150Byte ≈ 9.1 亿 G MB KB Byte 2)Hadoop2 2)Hadoop2.x 系列,配置 NameNode 内存 NameNode 内存默认 2000m,如果服务器内存 4G,NameNode 内存可以配置 3g。在 hadoop-env.sh 文件中配置如下。 HADOOP_NAMENODE_OPTS=-Xmx3072m 3)Hadoop3.x 系列,配置 NameNode 内存 (1)hadoop-env.sh 中描述 Hadoop information. >>> import math >>> print int(20*math.log(3)) 21 >>> quit() 1.3 开启回收站配置 开启回收站功能,可以将删除的文件在不超时的情况下,恢复原数据,起到防止误删除、 备份等作用。 1)回收站工作机制 尚硅谷大数据技术之 Hadoop(生产调优手册) ———————0 码力 | 41 页 | 2.32 MB | 1 年前3Hadoop 3.0以及未来
Cloudera创立 Hortonworks创立 Hadoop 1.0发布 Hadoop 2.0 GA Spark成为顶级顷目 Hadoop 3.0 2017 Hadoop生态系统 文件存储层 HDFS 资源/任务调度 YARN 计算引擎MapReduce 计算引擎Spark NoSQL HBase 数据仓 库SQL 机器/深 度学习 Batch 任务 流处理 搜索 … 单副本 0 100% 3副本 2 33% XOR(6个数据单元) 1 86% RS(6,3) 3 67% RS(10,4) 4 71% 存储布局-连续和条状 小文件处理 并行IO 数据本地性 数据本地性 小文件处理 纠错码在分布式存储系统中 HDFS 性能 多个Standby Namenode Active NN Standby NN Standby NN DN Journal Node Journal Node Write edit logs Read edit logs Block reports HDFS-6440 云计算-存储虚拟化 Hadoop 文件系统API SQL, 机器学习, 流处理, Batch… Hadoop 3介绍 • Common • HDFS • YARN YARN Timeline Service v.20 码力 | 33 页 | 841.56 KB | 1 年前3通过Oracle 并行处理集成 Hadoop 数据
1 Oracle 白皮书 — 通过 Oracle 并行处理集成 Hadoop 数据 引言 许多垂直行业都在关注文件系统中庞大的数据。这些数据中通常包含大量无关的 明细信息,以及部分可用于趋势分析或丰富其他数据的精华信息。尽管这些数据 存储在数据库之外,但一些客户仍然希望将其与数据库中的数据整合在一起以提 取对业务用户有价值的信息。 Oracle 数据库里访问某个文件系统中的外部文件或外部数据,最简单的方法莫过于使用 外部表。请参阅这里了解外部表。 外部表以表的形式展示存储在文件系统中的数据,并且可在 SQL 查询中完全透明地使用。 因此,可以考虑用外部表从 Oracle 数据库中直接访问 HDFS(Hadoop 文件系统)中存储的 数据。遗憾的是,常规的操作系统无法调用外部表驱动直接访问 HDFS 文件。FUSE(File Userspace)项目针对这种情况提供了解决方法。有多种 FUSE 驱动程序支持用户挂 载 HDFS 存储,并将其作为常规文件系统处理。通过使用一个此类驱动程序,并在数据库实 例上挂载 HDFS(如果是 RAC 数据库,则在其所有实例上挂载 HDFS),即可使用外部表基 础架构轻松访问 HDFS 文件。 图 1. 用数据库内置的 MapReduce 通过外部表进行访问 在图 10 码力 | 21 页 | 1.03 MB | 1 年前3
共 11 条
- 1
- 2