积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(8)Hadoop(8)

语言

全部中文(简体)(7)西班牙语(1)

格式

全部PDF文档 PDF(8)
 
本次搜索耗时 0.017 秒,为您找到相关结果约 8 个.
  • 全部
  • 云计算&大数据
  • Hadoop
  • 全部
  • 中文(简体)
  • 西班牙语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 大数据时代的Intel之Hadoop

    p://www.intel.com/design/literature.htm 性能测试和等级评定均使用特定的计算 机系统和/戒组件迚行测量,这些测试大致反映了英特尔® 产品的性能。系统硬件、软件设计戒配置的仸何差异都可能影响实际性能。购买者应迚行多方咨询,以评估其考虑购买的系统戒组 件的性能。如欲了解有关性能测试和英特尔产品性能的更多信息,请访问:英特尔性能挃标评测局限 此处涉及的所有产品 5 million 传统的数据处理技术 大数据时代的数据 速度 数据量 多样化 传统数据 大数据 GB -> TB TB -> PB以上 数据量稳定,增长不快 持续实时产生数据, 年增长率超过60% 主要为结构化数据 半结构化,非结构化, 多维数据 ―大数据‖ 挃数据集的大小超过了现有典型的数据库软件和工具的处理能力。不此同时,及时捕捉、 存储 Intel的角色 • Intel Hadoop商业发行版 • 对象存储技术 Intel的角色 • 面向大数据应用,在计算、存储和网络方面提供更快更为 高效的架构级别的优化方案 • 持续投入大数据应用开发,促迚软件系统和服务的丌断优 化和创新 • 推迚终端设备和传感器的智能化,构建亏联、可管理的和 安全的分布式架构 软硬结合 Intel Hadoop商业发行版
    0 码力 | 36 页 | 2.50 MB | 1 年前
    3
  • pdf文档 通过Oracle 并行处理集成 Hadoop 数据

    数据 示例代码 图3 至 图 5 实现的解决方案使用以下代码。所有的代码均在 Oracle Database 11g 和 5 个节点 的 Hadoop 集群上进行过测试。与大多数白皮书一样,请将这些脚本复制到文本编辑器中并 确保格式正确。 处理数据的表函数 该脚本中包含某些设置组件。例如,脚本开始的部分创建了图 3 中第 1 步所展示的仲裁表。 END; END; / Bash 脚本 下面这个简短的脚本是图 3 的第 3 步和第 4 步所示的数据库外控制器。只要 Hadoop mapper 保持运行,系统就会持续执行这个同步步骤。 #!/bin/bash cd –HADOOP_HOME- A="/net/scratch/java/jdk1.6.0_16/bin/java -classpath
    0 码力 | 21 页 | 1.03 MB | 1 年前
    3
  • pdf文档 大数据集成与Hadoop - IBM

    企业是否应卸载EDW中的所有ETL工作负载? • 是否应将所有大数据集成工作负载都推送到Hadoop? • 在没有并行关系数据库管理系统 (RDBMS) 和Hadoop 的情况下,大数据集成工作负载在ETL网格中发挥怎样 的持续作用? 这些问题的正确答案取决于企业独特的大数据需求。企业可以 选择并行RDBMS、Hadoop和可扩展的ETL网格来运行大数据 集成工作负载。但无论选择哪种方法,信息基础架构都必须满足 一 ETL工作负载会导致查询SLA降级,最终需要您额外投 资购买昂贵的EDW容量。 • 数据被转储到EDW之前未清理数据,一旦进入EDW环 境将永远无法进行清理工作,继而导致数据质量较差。 • 企业持续严重依赖手动编码SQL脚本来执行数据转换。 • 添加新数据源或修改现有ETL脚本较为昂贵并且需要很 长的时间,限制了快速响应最新需求的能力。 • 数据转换相对简单,因为无法使用ETL工具将较为复杂 不含RDBMS或Hadoop的网格 • Hadoop(包含或不含MapReduce pushdown)中 • Hadoop环境内外之间,在一端抽取数据卷,动态处理 和转换记录,然后在另一端加载记录 为了实现成功和可持续发展并保持较低的成本,一项有效的 大数据集成解决方案必须灵活支持上述各种场景。根据 IBM 与大数据客户的合作经验,InfoSphere Information Server是目前支持全部上述场景(包括向MapReduce推
    0 码力 | 16 页 | 1.23 MB | 1 年前
    3
  • pdf文档 尚硅谷大数据技术之Hadoop(生产调优手册)

    后台拉取过来的数据,需要多久能上传到集群?消费者 关心多久能从 HDFS 上拉取需要的数据? 为了搞清楚 HDFS 的读写性能,生产环境上非常需要对集群进行压测。 HDFS 的读写性能主要受网络和磁盘影响比较大。为了方便测试,将 hadoop102、 hadoop103、hadoop104 虚拟机网络都设置为 100mbps。 100Mbps 单位是 bit;10M/s 单位是 byte ; 1byte=8bit,100Mbps/8=12 –python 人工智能资料下载,可百度访问:尚硅谷官网 测试网速:来到 hadoop102 的/opt/module 目录,创建一个 [atguigu@hadoop102 software]$ python -m SimpleHTTPServer 2.1 测试 HDFS 写性能 0)写测试底层原理 1)测试内容:向 HDFS 集群写 10 个 128M 的文件 [atguigu@hadoop102 的数量,生产环境一般可通过 hadoop103:8088 查看 CPU 核数,设置为(CPU 核数 - 1) ➢ Number of files:生成 mapTask 数量,一般是集群中(CPU 核数-1),我们测试虚 拟机就按照实际的物理内存-1 分配即可 ➢ Total MBytes processed:单个 map 处理的文件大小 ➢ Throughput mb/sec:单个 mapTak 的吞吐量
    0 码力 | 41 页 | 2.32 MB | 1 年前
    3
  • pdf文档 Hadoop 迁移到阿里云MaxCompute 技术方案

    ................................................................................. 20 5.3 阶段 3:并行测试,割接 ............................................................................................... 的用户,建 议您选择部分试点业务先行进行迁移验证,待迁移验证通过后,再扩展更大的业务范围以降低迁 移风险、提高迁移质量。 5.3 阶段 3:并行测试,割接 迁移完成后,建议基于增量数据与当前系统进行并行测试,待并行一段时间后,对并行测试 结果进行对比验证,符合业务预期即可将业务全部切换至 MaxCompute 平台。 对于规模较小的系统迁移,一般迁移上线周期不超过 2 周。但更多的情况下,我们建议您 的性能。  工具使用方法  Example Alibaba Cloud MaxCompute 解决方案 27  输出结果 Output: 性能测试报告 [INFO ] 2019-05-20 17:17:21.664 [main] PerformanceTester - Create table ODPS_NETWORK_MEASUREMENT_TOOL_TEST_TBL
    0 码力 | 59 页 | 4.33 MB | 1 年前
    3
  • pdf文档 尚硅谷大数据技术之Hadoop(入门)

    1)hadoop100 虚拟机配置要求如下(本文 Linux 系统全部以 CentOS-7.5-x86-1804 为例) (1)使用 yum 安装需要虚拟机可以正常上网,yum 安装前可以先测试下虚拟机联网情 况 [root@hadoop100 ~]# ping www.baidu.com PING www.baidu.com (14.215.177.39) 56(84) bytes :wq (3)source 一下/etc/profile 文件,让新的环境变量 PATH 生效 [atguigu@hadoop102 ~]$ source /etc/profile 6)测试 JDK 是否安装成功 [atguigu@hadoop102 ~]$ java -version 如果能看到以下结果,则代表 Java 安装成功。 java version "1.8.0_212" /sbin ➢ 保存并退出: :wq (3)让修改后的文件生效 [atguigu@hadoop102 hadoop-3.1.3]$ source /etc/profile 6)测试是否安装成功 [atguigu@hadoop102 hadoop-3.1.3]$ hadoop version Hadoop 3.1.3 7)重启(如果 Hadoop 命令不能用再重启虚拟机)
    0 码力 | 35 页 | 1.70 MB | 1 年前
    3
  • pdf文档 Hadoop 概述

    本地,但服务提供商给予了更多选择,使得数据也可以存储在云端。 目前,SQL、关系型和非关系型数据存储均可使用 Hadoop 的功能。 当涉及数据时,Hadoop 已经从长远角度考虑了自身的设计。它 非常适用,因为数据会随着时间持续增长。它使用已存在的企业系 统,而这些系统可扩展为 Hadoop 数据平台。公司和开源社区中的 开发人员正在设计和定义基于 Hadoop 的大规模企业数据的最佳实 践。企业以及 IT 社区都非常关注各种数据类型的可扩展性。使用
    0 码力 | 17 页 | 583.90 KB | 1 年前
    3
  • pdf文档 银河麒麟服务器操作系统V4 Hadoop 软件适配手册

    ...... 7 3.3 启动 RESOURCEMANAGER 和 NODEMANAGER 守护进程 .......................... 7 4 执行 WORDCOUNT 测试用例 .............................................................................. 7 银河麒麟服务器操作系统 sbin/start-dfs.sh 3.3 启动 ResourceManager 和 NodeManager 守护进程 $ sbin/start-yarn.sh 4 执行 wordcount 测试用例 $ bin/hdfs dfs -ls / $ bin/hdfs dfs -mkdir /input $ bin/hdfs dfs -put /usr/local/hadoop-2
    0 码力 | 8 页 | 313.35 KB | 1 年前
    3
共 8 条
  • 1
前往
页
相关搜索词
大数时代IntelHadoop通过Oracle并行处理并行处理集成数据IBM硅谷技术生产调优手册迁移阿里MaxCompute方案入门概述银河麒麟服务务器服务器操作系统操作系统V4软件适配
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩