积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(12)Hadoop(12)

语言

全部中文(简体)(11)西班牙语(1)

格式

全部PDF文档 PDF(12)
 
本次搜索耗时 0.016 秒,为您找到相关结果约 12 个.
  • 全部
  • 云计算&大数据
  • Hadoop
  • 全部
  • 中文(简体)
  • 西班牙语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Hadoop 迁移到阿里云MaxCompute 技术方案

    Hadoop 及开源生态由一系列的开源组件共同组成,很多用户基于 Hadoop 及开源生态组件构 建企业数据仓库/数据湖、机器学习、实时分析、BI 报表等大数据应用。我们常见的大数据架构 的逻辑组件关系如下图所示: 这些逻辑组件包括:  数据源:数据源包括关系型数据库、日志文件、实时消息等。  数据存储:面向海量数据存储的分布式文件存储服务,支持 结构化数据和非结构数据数据存 实时消息采集:用于实时数据采集,可扩展、高吞吐、可靠的消息服务。如 Kafka。  流处理:对实时数据进行低延迟流式计算的服务。如 Flink、Spark Streaming、Storm 等。  机器学习:满足机器学习工作负载的服务。如当前流行的 Spark MLib/ML、Tensorflow 等。  分析型数据存储:对数据进行处理加工后,面向应用场景,将数据以结构化的方式进行存储, 以便分析工具或分析应用能够获取数据。如利用 批处理(MaxCompute MapReduce/SQL/Spark) EMR 对应组件 Alibaba Cloud MaxCompute 解决方案 10 机器学习 Spark Mlib/ML Tensorflow PAI 机器学习平台 MaxCompute Spark 实时消息采集 Kafka Datahub 日志服务(LogHub 组件) 消息队列 Kafka
    0 码力 | 59 页 | 4.33 MB | 1 年前
    3
  • pdf文档 尚硅谷大数据技术之Hadoop(入门)

    Cutting 2)2001年年底Lucene成为Apache基金会的一个子项目。 3)对于海量数据的场景,Lucene框架面对与Google同样的困难,存储海量数据困难,检索海量速度慢。 4)学习和模仿Google解决这些问题的办法 :微型版Nutch。 5)可以说Google是Hadoop的思想之源(Google在大数据方面的三篇论文) GFS --->HDFS Map-Reduce Hadoop的logo 1.3 Hadoop 三大发行版本(了解) Hadoop 三大发行版本:Apache、Cloudera、Hortonworks。 Apache 版本最原始(最基础)的版本,对于入门学习最好。2006 Cloudera 内部集成了很多大数据框架,对应产品 CDH。2008 Hortonworks 文档较好,对应产品 HDP。2011 Hortonworks 现在已经被 Cloudera MapTask SecondaryNa meNode 1.6 大数据技术生态体系 大数据技术生态体系 数据库(结构化数据) 文件日志(半结构化数据) 视频、ppt等(非结构化数据) Sqoop数据传递 Flume日志收集 Kafka消息队列 HDFS文件存储 HBase非关系型数据库 YARN资源管理 MapReduce离线计算 Spark Core内存计算 Hive 数据查询 Spark
    0 码力 | 35 页 | 1.70 MB | 1 年前
    3
  • pdf文档 Hadoop 3.0以及未来

    据顷目建立ebay的广告和数 据平台。 • 加入ebay前,在intel工作6年,大数据架构师,负责领导大数据的 开源贡献、基于Intel平台的开源顷目优化以及一些基于Spark的大 规模机器/深度学习顷目。 • 超过9年的互联网、云计算、大数据的工作经验。 概要 • Hadoop的历叱 • Hadoop 3介绍  Common  HDFS  YARN  MapReduce Hadoop 3.0 2017 Hadoop生态系统 文件存储层 HDFS 资源/任务调度 YARN 计算引擎MapReduce 计算引擎Spark NoSQL HBase 数据仓 库SQL 机器/深 度学习 Batch 任务 流处理 搜索 … Kafka Hadoop 3介绍 • Common  JDK 8+ 升级  Classpath隔离  Shell脚本的重构 • HDFS Journal Node Write edit logs Read edit logs Block reports HDFS-6440 云计算-存储虚拟化 Hadoop 文件系统API SQL, 机器学习, 流处理, Batch… Hadoop 3介绍 • Common • HDFS • YARN  YARN Timeline Service v.2  YARN Federation 
    0 码力 | 33 页 | 841.56 KB | 1 年前
    3
  • pdf文档 Hadoop 概述

    Keeper 和 Hive 的角色 ● Hadoop 与其他系统的集成 ● 数据集成与 Hadoop Hadoop 是一种用于管理大数据的基本工具。这种工具满足了企 业在大型数据库(在 Hadoop 中亦称为数据湖)管理方面日益增长的 需求。当涉及数据时,企业中最大的需求便是可扩展能力。科技和 商业促使各种组织收集越来越多的数据,而这也增加了高效管理这 些数据的需求。本章探讨 要角色。软件栈始于 Hadoop Common 中所包含的基础组件。Hadoop 1 第 章 Hadoop 大数据解决方案 2 Common 是常见工具和库的集合,用于支持其他 Hadoop 模块。和 其他软件栈一样,这些支持文件是一款成功实现的必要条件。而众 所周知的文件系统,Hadoop 分布式文件系统,或者说 HDFS,则是 Hadoop 的 znode),使得分布式进程相互协调工作。 每个 znode 都由一个路径来标识,路径元素由斜杠(/)分隔。 还有其他一些系统能与 Hadoop 进行集成并从其基础架构中受 益。虽然 Hadoop 并不被认为是一种关系型数据库管理系统 (RDBMS),但其仍能与 Oracle、MySQL 和 SQL Server 等系统一起 工作。这些系统都已经开发了用于对接 Hadoop 框架的连接组件。 我们将在本章介绍这些组件中的一部分,并且展示它们如何与
    0 码力 | 17 页 | 583.90 KB | 1 年前
    3
  • pdf文档 Spark 简介以及与 Hadoop 的对比

    Hadoop MapReduce 所具有的 优点;但不同于 MapReduce 的是 Job 中间输出和结果可以保存在内存中,从而不再需要读 写 HDFS,因此 Spark 能更好地适用于数据挖掘与机器学习等需要迭代的 map reduce 的算 法。 1.2 Spark 核心概念 1.2.1 弹性分布数据集(RDD) RDD 是 Spark 的最基本抽象,是对分布式内存的抽象使用,实现了以操作本地集合的方式 cache 到内存中,每次对 RDD 数据集的操作之后的结果,都可以存放到 内存中,下一个操作可以直接从内存中输入,省去了 MapReduce 大量的磁盘 IO 操作。这对 于迭代运算比较常见的机器学习算法, 交互式数据挖掘来说,效率提升比较大。 1.2.2 RDD 的转换与操作 对于 RDD 可以有两种计算方式:转换(返回值还是一个 RDD)与操作(返回值不是一个 RDD) 1. RDD 数据写 到存储系统中。Actions 是触发 Spark 启动计算的动因。 1.2.3 血统(Lineage) 利用内存加快数据加载,在众多的其它的 In-Memory 类数据库或 Cache 类系统中也有实 现,Spark 的主要区别在于它处理分布式运算环境下的数据容错性(节点实效/数据丢失)问 题时采用的方案。为了保证 RDD 中数据的鲁棒性,RDD 数据集通过所谓的血统关系(Lineage)
    0 码力 | 3 页 | 172.14 KB | 1 年前
    3
  • pdf文档 MATLAB与Spark/Hadoop相集成:实现大数据的处理和价值挖

    ▪ Velocity - 数据处理速度,数据处理速度需要快速 数据处理速度是决定大数据应用的关键 4 大数据带来的挑战 ▪ 传统的工具和方法不能有效工作 – 访问和处理数据变得困难; – 需要学习使用新的工具和新的编程方式; – 不得不重写算法以应对数据规模的增大; ▪ 现有处理或计算方法下的结果质量受到影响 – 被迫只能处理一部分数据(数据子集); – 采用新的工具或重写算法会对现有生产力产生影响; tall array – 一种新的数据类型,专门用于处理大数据. – 用于处理数据规模超过单个机器或群集的内存承载能力的数据集合 ▪ 使用方式等同于MATLAB 数组(array) – 支持数据类型包括数值型、字符串、时间类型、表等… – 支持众多基本的数学函数、统计函数、索引函数等. – 支持机器学习算法包括分类、聚类和回归 7 tall array Single Machine Memory Tall支持的大数据可视化 ▪ plot ▪ scatter ▪ binscatter ▪ histogram ▪ histogram2 ▪ ksdensity 15 tall 支持的大数据机器学习算法 – K-means Clustering (kmeans) – Linear Regression (fitlm) – Logistic & Generalized Linear Regression
    0 码力 | 17 页 | 1.64 MB | 1 年前
    3
  • pdf文档 大数据集成与Hadoop - IBM

    卸载下来,以便降低成本并改善查询 服务水平协议 (SLA)。该用例会引发以下问题: • 企业是否应卸载EDW中的所有ETL工作负载? • 是否应将所有大数据集成工作负载都推送到Hadoop? • 在没有并行关系数据库管理系统 (RDBMS) 和Hadoop 的情况下,大数据集成工作负载在ETL网格中发挥怎样 的持续作用? 这些问题的正确答案取决于企业独特的大数据需求。企业可以 选择并行RDBMS、Hadoop和可扩展的ETL网格来运行大数据 图3)。 在ETL网格中运行 在数据库中运行 在Hadoop中运行 图3. 大数据集成需要一种可利用任何环境优势的平衡方法。 优点 • 利用ETL MPP引擎 • 利用商业硬件和存储 • 利用网格整合 SMP 服务器 • 执行无法推送到RDBMS的复 杂转换(数据清理) • 释放RDBMS服务器上的容量 • 处理异构数据源(未存储到 数据库中) • ETL服务器可以较快地执行某 ETL服务器在执行某些流程时 速度较慢(数据已经存储到 关系表中) • 可能需要额外的硬件(低成 本硬件) 优点 • 利用数据库MPP引擎 • 将数据移动降至最低限度 • 利用数据库执行加入/聚合 • 清除数据后效果最佳 • 释放ETL服务器上的计算周期 • 利用RDBMS服务器的多余容量 • 数据库可以较快地执行某些 流程 缺点 • 硬件和存储费用昂贵 • 查询SLA出现降级 • 并非所有ETL逻辑均可推送到
    0 码力 | 16 页 | 1.23 MB | 1 年前
    3
  • pdf文档 银河麒麟服务器操作系统V4 Hadoop 软件适配手册

    高效数据 处理、虚拟化等关键技术优势,针对关键业务构建的丰富高效、安全可靠的功能 特性,兼容适配长城、联想、浪潮、华为、曙光等国内主流厂商的服务器整机产 品,以及达梦、金仓、神通等主要国产数据库和中创、金蝶、东方通等国产中间 件,满足虚拟化、云计算和大数据时代,服务器业务对操作系统在性能、安全性 及可扩展性等方面的需求,是一款具有高安全、高可用、高可靠、高性能的自主 可控服务器操作系统。 HDFS 是 Hadoop 分布式文件系统(Hadoop Distributed File System)的缩写, 为分布式计算存储提供了底层支持。采用 Java 语言开发,可以部署在多种普通的 廉价机器上,以集群处理数量积达到大型主机处理性能。 银河麒麟服务器操作系统 V4 hadoop 软件适配手册 3 HDFS 采用 master/slave 架构。一个 HDFS 集群包含一个单独的 结果可以合并在 一起来计算最终的结果。简而言之,Hadoop Mapreduce 是一个易于编程并且能在 大型集群(上千节点)快速地并行得处理大量数据的软件框架,以可靠,容错的 方式部署在商用机器上。MapReduce 这个术语来自两个基本的数据转换操作:map 过程和 reduce 过程。  map: map 操作会将集合中的元素从一种形式转化成另一种形式,在这种情况下, 输
    0 码力 | 8 页 | 313.35 KB | 1 年前
    3
  • pdf文档 Hadoop开发指南

    注解:本例中所运⾏脚本需在CentOS操作系统上,其他操作系统请修改脚本后再尝试执⾏。 1. 在 在UHost上安装 上安装Hadoop客户端 客户端 出于安全性考虑,⼀般建议⽤⼾在⾮UHadoop集群机器上安装客⼾端进⾏任务提交与相关操作 1.1 控制台安装 控制台安装 可通过控制台⼀键安装,参考:客⼾端安装。 1.2 ⾃⾏安装 ⾃⾏安装 针对部分存量已⾃⾏安装⽤⼾,可根据选择按照以下⽅式⾃⾏安装。 /v1/tmp/uhadoop.txt?op=CREATE" Hadoop开发指南 Copyright © 2012-2021 UCloud 优刻得 6/12 注解: 1. 需要在执⾏此命令机器加上集群所有节点host 2. 若提⽰Operation category READ is not supported in state standby,请更换uhadoop-******-master2尝试 的http接⼝,可以通过WebHDFS REST API对HDFS进⾏读写等访问。与WebHDFS的区别是,Httpfs不需要客⼾端访问集群的每⼀个节点,只需授权 访问启动了Httpfs服务的单台机器即可(UHadoop默认在master1:14000开启Httpfs)。由于Httpfs是在内嵌的tomcat中⼀个Web应⽤,因此性能上会受到⼀些限制。 Hadoop开发指南 Copyright
    0 码力 | 12 页 | 135.94 KB | 1 年前
    3
  • pdf文档 尚硅谷大数据技术之Hadoop(生产调优手册)

    注意:由于 HDFS 需要启动单独的 Rebalance Server 来执行 Rebalance 操作,所以尽量 不要在 NameNode 上执行 start-balancer.sh,而是找一台比较空闲的机器。 4.4 黑名单退役服务器 黑名单:表示在黑名单的主机 IP 地址不可以,用来存储数据。 企业中:配置黑名单,用来退役服务器。 黑名单配置步骤如下: 1)编辑/opt/module/hadoop-3 (5)再观察上一个窗口 Safe mode is OFF (6)HDFS 集群上已经有上传的数据了 6.3 慢磁盘监控 “慢磁盘”指的时写入数据非常慢的一类磁盘。其实慢性磁盘并不少见,当机器运行时 间长了,上面跑的任务多了,磁盘的读写性能自然会退化,严重时就会出现写入数据延时的 尚硅谷大数据技术之 Hadoop(生产调优手册) —————— 环形缓冲区溢出的阈值,默认80% ,可以提高的90% 9)异常重试 mapreduce.map.maxattempts每个Map Task最大重试次数,一旦重试 次数超过该值,则认为Map Task运行失败,默认值:4。根据机器 性能适当提高。 1)自定义分区,减少数据倾斜; 定义类,继承Partitioner接口,重写getPartition方法 4)在不影响业务结果的前提条件下可以提前采用Combiner job.
    0 码力 | 41 页 | 2.32 MB | 1 年前
    3
共 12 条
  • 1
  • 2
前往
页
相关搜索词
Hadoop迁移阿里MaxCompute技术方案硅谷大数入门3.0以及未来概述Spark简介对比MATLAB集成实现数据处理价值IBM银河麒麟服务务器服务器操作系统操作系统V4软件适配手册开发指南生产调优
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩