机器学习课程-温州大学-09机器学习-支持向量机
2022年02月 机器学习-支持向量机 黄海广 副教授 2 本章目录 01 支持向量机概述 02 线性可分支持向量机 03 线性支持向量机 04 线性不可分支持向量机 3 1.支持向量机概述 01 支持向量机概述 02 线性可分支持向量机 03 线性支持向量机 04 线性不可分支持向量机 4 1.支持向量机概述 支 持 向 量 机 ( classifier),其决 策边界是对学习样本求解的最大边距超平面( maximum-margin hyperplane) 。 与逻辑回归和神经网络相比,支持向量机,在学 习复杂的非线性方程时提供了一种更为清晰,更 加强大的方式。 支持向量 距离 5 1.支持向量机概述 硬间隔、软间隔和非线性 SVM 假如数据是完全的线性可分的,那么学习到的模型可以称为硬间隔支持向 量机。换个说法,硬间隔指的就是完全分类准确,不能存在分类错误的情 况。软间隔,就是允许一定量的样本分类错误。 软间隔 硬间隔 线性可分 线性不可分 6 支持向量 1.支持向量机概述 算法思想 找到集合边缘上的若干数据(称为 支持向量(Support Vector)) ,用这些点找出一个平面(称为决 策面),使得支持向量到该平面的 距离最大。 距离 7 1.支持向量机概述 背景知识 任意超平面可以用下面这个线性方程来描述: ?T? + ? = 00 码力 | 29 页 | 1.51 MB | 1 年前3微博在线机器学习和深度学习实践-黄波
模型验证 离线训练 实时训练 模型训练 模型部署 在线服务 离线验证 在线发布 在线验证 在线一致性/ 模型稳定性/… 一键打包 端口探测 蓝绿部署/灰度发布 AUC/准确率/ 召回率/… 流量切换 版本更新 全量发布 … verson1 verson2 … kubenetes/olsubmit 模型库 3 在线机器学习-模型服务部署 • 模型评估 • 模型上线部署前指标评估 Wide&Deep;DeepFM 4 深度学习 物料粗排 特征向量化 基于Item2vec的 博主召回和微博 召回 物料精排 向量索引 DSSM/FM/FF M生成博主与物 料向量,采用 向量进行召回 特征向量化:Item2vec 向量索引:FM/FFM/ DSSM 模型召回:DIN/DIEN/TDM 模型召回 融入用户近期互动行 为的深度模型召回 单目标:LR->W&D->FM->DeepFM 文本Embedding特征,相比于文本标签,相关指标提升约3+% • 基于word2vec、bert等生成embedding向量,提高了语义编码的准确性,降低了训练成本 • 指标提升主要来源于Embedding特征保留了更多原始信息,避免了标签带来的信息损失 • User/Item Embedding 协同召回 • Item2vec相比于传统协同过滤MF等,稀疏样本下表现极好 • 同时该特征可用于排序部分特征输入0 码力 | 36 页 | 16.69 MB | 1 年前3超大规模深度学习在美团的应用-余建平
搭建起支持千亿 级别规模的深度学习系统,与推荐、搜索、广告业务深度合作,在算法上提供从召回到 排序的全系统优化方案,在工程上提供离线、近线、在线的全流程解决方案。 目录 • 美团超大规模模型场景简介 • 超大规模机器学习MLX MLX平台目标 MLX平台架构 • 模型场景应用 召回模型 排序模型 目录 • 美团超大规模模型场景简介 • 超大规模机器学习MLX 超大规模机器学习MLX MLX平台目标 MLX平台架构 • 模型场景应用 召回模型 排序模型 美团超大规模模型应用场景 美团推荐 美团搜索 美团广告 美团应用场景简介 • 场景特点 亿级的用户,千万级的O2O商品 海量的用户行为,完整的交易闭环 LBS相关的推荐 • 模型特点 百亿级别的训练数据 千亿级别的模型特征 秒级实时的模型反馈 目录 • 美团超大规模模型场景简介 美团超大规模模型场景简介 • 超大规模机器学习MLX MLX平台目标 MLX平台架构 • 模型场景应用 召回模型 排序模型 超大规模模型的有效性 • VC维理论 描述模型的学习能力:VC维越大模型越复杂,学习能力越强 机器学习能力 = 数据 + 特征 + 模型 • 数据 海量数据: 美团的亿级用户、千万级POI • 特征 大规模离散特征 > 小规模泛化特征0 码力 | 41 页 | 5.96 MB | 1 年前3从推荐模型的基础特点看大规模推荐类深度学习系统的设计 袁镱
�推荐场景深度学习系统的基本问题与特点 �推荐类模型的深度学习系统设计 � 系统维度 � 算法维度 �总结 基于深度学习模型的推荐流程,场景与⽬标 Serving系统 HDFS 数据 通道 训练系统 召回 业务服务 排序 混排 模型 管理 上线 管理 ⽆量 RGW/Cos/ kafka 样本 存储 实时样本 ⽣成服务 离线样本 ⽣成任务 数据 通道 特征 处理 模型 登记 模型 全量模型,TB级,低峰期(Cos存储) 增量模型,GB级,20分钟(Cos存储) 实时模型,KB级,秒(Kafka) 分布式 Serving集群 推理节点 分布式 Serving集群 推理节点 召回索引服务 业务服务 1. 获取⽤户向量 2. 向量召回 异步 刷库 训练端⽣成⾼频参数集 独⽴通道上线 降低请求⽑刺 Feature 2.1: 短时间内只 有部分参数被⽤到 Feature 2.2 Hotkey变化慢0 码力 | 22 页 | 6.76 MB | 1 年前3阿里云上深度学习建模实践-程孟力
要求: 准确: 低噪声 全面: 同分布 模型选型: 容量大 计算量小 训练推理: 高qps, 低rt 支持超大模型 性价比 流程长、环节多: 推荐场景: 召回 + 粗排 + 精排 + 多样性/冷启动 实人认证: 卡证识别 + 人脸检测 + 活体检测 + 人脸 识别 … 模型构建: 问题: ✗ 方案复杂周期长/见效慢 ✗ 细节多难免踩坑 PAI-Rec – 推荐引擎 BE召回/Hologres hot x2i vec 排序 粗排 精排 重排 MaxCompute Datahub 离线特征 样本构造 实时特征 Flink 训练数据 推荐日志 模型发布 在线流程 离线流程 智能推荐解决方案 > PAI-REC 推荐引擎 PAI-REC 推荐引擎 多路召回 曝光/状态过滤 粗排/精排 策略[类目打散、流量控制、…] PAI-REC平台 自动化降级 负载均衡 灰度发布 超时控制 平台支持 日志SLS 在线存储 Hologres/OTS BE Redis 读取数据 向量引擎 BE/Hologres/Faiss/Milvus 向量检索 冷启动召 回 冷启动排 序 Pipeline1 Pipeline2 标准化: Standard Solutions 标准化: Standard Solutions0 码力 | 40 页 | 8.51 MB | 1 年前3机器学习课程-温州大学-05机器学习-机器学习实践
混淆矩阵(confusion_matrix) 评价指标 准确率 Accuracy = TP + TN TP + TN + FP + FN 精确率 Precision = TP TP + FP 召回率 Recall = TP TP + FN F1 score F1 = 2 × Precision × Recall Precision + Recall 11 评价指标 有100张照片 =70/100=0.7 精度(Precision)=TP/(TP+ FP) TP=40,TP+ FP=50。 Precision =40/50=0.8 召回率(Recall)=TP/(TP+ FN) TP=40,TP+FN =60。则召回率为: Recall =40/60=0.67 项目 符号 猫狗的例子 识别出的正例 TP+FP 40+10=50 识别出的负例 TN+FN 30+20=50 正则化能降低参数范数的总和。 ??正则化给出的最优解w*是使解更加靠近某些轴,而其它的轴则为0,所以??正则化能使得到的参数稀疏化。 ??正则化是 指在损失函 数中加入权 值向量w的绝 对值之和, ??的功能是 使权重稀疏 在损失函数 中加入权值 向量w的平 方和,??的 功能是使权 重平滑。 25 正则化 x[2] x[3] x[1] a[L] DropOut Dropout的功能类似于?2正则化,与0 码力 | 33 页 | 2.14 MB | 1 年前3深度学习在电子商务中的应用
来预测词语本身出现的概 率 Skip-gram: 通过词语本身 来预测上下文词语出现的 概率 10 基于词语聚类的矢量化模型 • Word2vec等工具可以有效地将词语转化为向量 • 将句子/段落/文章有效转化为向量则有很大的挑战。 简单平均/加权平均容易失去句子等的语义/结构信息 直接以句子为单位进行训练, 则训练文本严重不足 • 电商搜索中遇到的主要是句子/短文分析, 可以将短文中的词语聚类, • 传统聚类(如Kmeans)在几何距离的基础上进行聚类, 效果不好。 利用随机过程做词 语聚类可以解决这一问题 11 具体的生成cluster的流程如图: V[i]: 为产品信息里每个词的词语向量(word vector)分数 C[i]: 为聚类(cluster)的vector分数 N: 为cluster的数目 Sim(I, j): 词语i 与cluster j的余弦相似度 Random: 生成一个0 的矢量 产品类别过滤 产品频率过滤 矢量转换回商 品 14 原型评测结果 矢量化搜索引擎与易购传统引擎搜索效果对比 (2016-07-25测试结果) 15 • 该技术不仅召回与搜索词完全匹配的结果,还可召回与搜索词文本不匹配、但含义近似的结果。 效果示例 如:经测评,当搜索词为“松下筒灯”, 易购网站返回6个相关结果, 美研方案返回64个相关结果 现有方案 原型系统 16 • 首先进行词语的矢量化0 码力 | 27 页 | 1.98 MB | 1 年前3《TensorFlow 2项目进阶实战》4-商品检测篇:使用RetinaNet瞄准你的货架商品
(IoU) Bounding Box Ground Truth ??? = ???????????? ????? = Bounding Box Ground Truth 目标检测评估:准确率与召回率(以GT为中心) 目标检测评估:mean Average Precision(mAP) 基础:深度学习在目标检测的应用 目标检测近20年发展 Ref: Zou, Z., Shi, Z., Guo Faster R-CNN 理论:YOLO系列一阶段模型概述 YOLO 与 RCNN 系列对比 YOLOv1:首个深度学习的一阶段检测器 YOLOv1:首个深度学习的一阶段检测器 YOLO输出向量:S x S x (B * 5 + C) YOLOv1:首个深度学习的一阶段检测器 YOLO检测网络包括24个卷积层和2个全连接层,如下图所示。 7 x 7 x (2 * 5 + 20) YOLOv10 码力 | 67 页 | 21.59 MB | 1 年前3《TensorFlow 快速入门与实战》4-实战TensorFlow房价预测
Regression) • 决策树(Decision Tree) • 随机森林(Random Forest) • 最近邻算法(k-NN) • 朴素贝叶斯(Naive Bayes) • 支持向量机(SVM) • 感知器(Perceptron) • 深度神经网络(DNN) 前置知识:线性回归 在统计学中,线性回归是利用称为线性回归方程的最小二乘函数对一个或多个自变量和因变 量之间关 看数据集分布情况。 在模型设计过程中,用户往往需要分析和检查数据流图是否正确实现。 在模型训练过程中,用户也常常需要关注模型参数和超参数变化趋势。 在模型测试过程中,用户也往往需要查看准确率和召回率等评估指标。 因此,TensorFlow 项目组开发了机器学习可视化工具 TensorBoard , 它通过展示直观的图形,能够有效地辅助机器学习程序的开发者和使 用者理解算法模型及其工作流程,提升模型开发工作效率。0 码力 | 46 页 | 5.71 MB | 1 年前3【PyTorch深度学习-龙龙老师】-测试版202112
11.7 RNN 短时记忆 11.8 LSTM 原理 11.9 LSTM 层使用方法 11.10 GRU 简介 11.11 LSTM/GRU 情感分类问题再战 11.12 预训练的词向量 11.13 参考文献 第 12 章 自编码器 12.1 自编码器原理 12.2 MNIST 图片重建实战 12.3 自编码器变种 12.4 变分自编码器 12.5 ?,其中??代表模型函数,?为模型的参数。在训练时,通过计算模型的预 测值??(?)与真实标签?之间的误差来优化网络参数?,使得网络下一次能够预测更精准。常 见的有监督学习有线性回归、逻辑回归、支持向量机、随机森林等。 无监督学习 收集带标签的数据往往代价较为昂贵,对于只有样本?的数据集,算法需 要自行发现数据的模态,这种方式叫作无监督学习。无监督学习中有一类算法将自身作为 监督信号,即模型需要学习的映射为 LSTM 被 Jürgen Schmidhuber 提出;同年双向循环 神经网络也被提出。 遗憾的是,神经网络的研究随着以支持向量机(Support Vector Machine,简称 SVM)为 代表的传统机器学习算法兴起而逐渐进入低谷,称为人工智能的第二次寒冬。支持向量机 拥有严格的理论基础,训练需要的样本数量较少,同时也具有良好的泛化能力,相比之 下,神经网络理论基础欠缺,可解释性差,很难训练深层网络,性能也相对一般。图0 码力 | 439 页 | 29.91 MB | 1 年前3
共 49 条
- 1
- 2
- 3
- 4
- 5