积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(34)机器学习(34)

语言

全部中文(简体)(33)英语(1)

格式

全部PDF文档 PDF(34)
 
本次搜索耗时 0.079 秒,为您找到相关结果约 34 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    以预见地,本书会存在部分语句表达不准确、部分素材尚未创作完成、部分参考引用未能及 时补充、甚至一些错误出现,因此本书以开源、免费地方式发布,希望一方面能够帮助初学 者快速上手深度学习算法,另一方面也能汇聚众多行业专家们的力量,修正测试版中的谬误 之处,让本书变得更为完善。 本书虽然免费开放电子版,供个人学习使用,但是未经许可,不能用于任何个人或者企 业的商业用途,违法盗版和销售,必究其法律责任。 龙龙老师 2021 PyTorch 进阶 5.1 合并与分割 5.2 数据统计 5.3 张量比较 5.4 填充与复制 5.5 数据限幅 5.6 高级操作 5.7 经典数据集加载 5.8 MNIST 测试实战 5.9 参考文献 第 6 章 神经网络 6.1 感知机 6.2 全连接层 6.3 神经网络 6.4 激活函数 6.5 输出层设计 6.6 误差计算 6 7.8 Himmelblau 函数优化实战 7.9 反向传播算法实战 7.10 参考文献 第 8 章 PyTorch 高级用法 8.1 常见功能模块 8.2 模型装配、训练与测试 8.3 模型保存与加载 8.4 自定义类 8.5 模型乐园 8.6 测量工具 8.7 可视化 8.8 参考文献 第 9 章 过拟合 9.1 模型的容量 9
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 MNIST测试

    0 码力 | 7 页 | 713.39 KB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    训练和验证模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639 13.13.7 在 Kaggle 上对测试集进行分类并提交结果 . . . . . . . . . . . . . . . . . . . . . . . 640 13.14 实战Kaggle比赛:狗的品种识别(ImageNet Dogs) 14.6 训练和验证模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646 13.14.7 对测试集分类并在Kaggle提交结果 . . . . . . . . . . . . . . . . . . . . . . . . . . . 647 14 自然语言处理:预训练 649 14.1 词嵌入(word2vec) 亚马逊,在20世纪90年代开发了成功的数据库驱 动网页应用程序。但在过去的10年里,这项技术在帮助创造性企业家方面的潜力已经得到了更大程度的发挥, 部分原因是开发了功能强大、文档完整的框架。 测试深度学习的潜力带来了独特的挑战,因为任何一个应用都会将不同的学科结合在一起。应用深度学习需 要同时了解(1)以特定方式提出问题的动机;(2)给定建模方法的数学; (3)将模型拟合数据的优化算法; (4)
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 全连接神经网络实战. pytorch 版

    parameters () , l r=learning_rate ) 现在我们先构思一下训练的主体程序,该程序训练 10 轮,并且每轮会训练一次,然后测试一 次准确率。训练函数的输入是训练数据、神经网络体、损失函数计算体以及优化器;测试函数不 需要优化器: epochs = 10 f or t in range ( epochs ) : print ( f ”Epoch␣{ t+1 loss_function , optimizer ) test_loop ( test_dataloader , model , loss_function ) print ( ”Done ! ” ) 然后就是训练和测试的程序,训练一轮的程序如下: def train_loop ( dataloader , model , loss_function , optimizer ) : s i z e = len ( 我们打印输出一下 len(dataloader.dataset),发现训练集有 60000 个数据。因为每个 batch 个 数为 64 个数据,因此训练集要训练 938 次,我们每 100 次输出一下。 测试集的程序如下: Chapter 2. 构建神经网络 13 def test_loop ( dataloader , model , loss_function ) : s i z e = len
    0 码力 | 29 页 | 1.40 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    . . . . . . . . . . . . . . . 29 3.3.6.4 处理已保存模型中的自定义层(或其他自定义对象) . . . . . . . 30 3.3.7 为什么训练误差比测试误差高很多? . . . . . . . . . . . . . . . . . . . . . . 31 3.3.8 如何获取中间层的输出? . . . . . . . . . . . . . Keras? • 如何在多 GPU 上运行 Keras 模型? • “sample”, “batch”, “epoch” 分别是什么? • 如何保存 Keras 模型? • 为什么训练误差比测试误差高很多? • 如何获取中间层的输出? • 如何用 Keras 处理超过内存的数据集? • 在验证集的误差不再下降时,如何中断训练? • 验证集划分是如何计算的? • 在训练过程中数据是否会混洗? AttentionLayer}) 3.3.7 为什么训练误差比测试误差高很多? Keras 模型有两种模式:训练和测试。正则化机制,如 Dropout 和 L1/L2 权重正则化,在测 试时是关闭的。 此外,训练误差是每批训练数据的平均误差。由于你的模型是随着时间而变化的,一个 epoch 中的第一批数据的误差通常比最后一批的要高。另一方面,测试误差是模型在一个 epoch 训练 完后计算的,因而误差较小。
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 《TensorFlow 快速入门与实战》6-实战TensorFlow验证码识别

    验证码(CAPTCHA)简介 全自动区分计算机和人类的公开图灵测试(英语:Completely Automated Public Turing test to tell Computers and Humans Apart,简称CAPTCHA),俗称验证码,是一种区分用户是 计算机或人的公共全自动程序。在CAPTCHA测试中,作为服务器的计算机会自动生成一 个问题由用户来解答。这个问题 。 一种常用的CAPTCHA测试是让用户输入一个扭曲变形的图片上所显示的文字或数字,扭 曲变形是为了避免被光学字符识别(OCR, Optical Character Recognition)之类的计算机程 序自动识别出图片上的文数字而失去效果。由于这个测试是由计算机来考人类,而不是 标准图灵测试中那样由人类来考计算机,人们有时称CAPTCHA是一种反向图灵测试。 https://zh.wikipedia 快速搭建 验证码识别服务 使用 Flask 启动 验证码识别服务 $ export FLASK_ENV=development && flask run --host=0.0.0.0 打开浏览器访问测试 URL(http://localhost:5000/ping) 访问 验证码识别服务 $ curl -X POST -F image=@2140.png 'http://localhost:5000/predict'
    0 码力 | 51 页 | 2.73 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-05深度学习-深度学习实践

    selection),即做模型的最终优化及确定的, 用来辅助我们的模型的构建,即训练超参数,可选; 测试集(Test Set): 为了测试已经训练好的模型的精确度。 三者划分:训练集、验证集、测试集 机器学习:60%,20%,20%;70%,10%,20% 深度学习:98%,1%,1% (假设百万条数据) 数据集划分 数据集 训练集 验证集 测试集 4 交叉验证 1. 使用训练集训练出10个模型 2. 用10个模型分别对交叉验证集 用10个模型分别对交叉验证集 计算得出交叉验证误差(代价函 数的值) 3. 选取代价函数值最小的模型 4. 用步骤3中选出的模型对测试 集计算得出推广误差(代价函数 的值) 5 数据集制作 PyTorch的dataloader是用于读取训练数据的工具,它可以自动将数据分割 成小batch,并在训练过程中进行数据预处理。 6 数据集制作 class MyDataset(Dataset): 2正则化不同的是,被应用的方 式不同,dropout也会有所不同,甚至更适用于不同的输入范围 keep-prob=1(没有dropout) keep-prob=0.5(常用取值,保留一半神经元) 在训练阶段使用,在测试阶段不使用! Dropout正则化 13 正则化 Early stopping代表提早停止训练神经网络 Early stopping的优点是,只运行 一次梯度下降,你可以找出?的较小 值,中间值和较大值,而无需尝试
    0 码力 | 19 页 | 1.09 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-Scikit-learn

    Scikit-learn主要用法 03 Scikit-learn案例 7 X_train | 训练数据. X_test | 测试数据. X | 完整数据. 符号标记 2.Scikit-learn主要用法 y_train | 训练集标签. y_test | 测试集标签. y | 数据标签. 8 2.Scikit-learn主要用法 导入工具包 from sklearn import random_state=12, stratify=y, test_size=0.3) 将完整数据集的70%作为训练集,30%作为测试集,并使得测试集和训练集 中各类别数据的比例与原始数据集比例一致(stratify分层策略),另外 可通过设置 shuffle=True 提前打乱数据 数据划分 训练集 测试集 数据集 11 2.Scikit-learn主要用法 使⽤Scikit-learn进⾏数据标准化 from 、损失函 数以及成对数据的距离度量函数. from sklearn.metrics import accuracy_score accuracy_score(y_true, y_pred) 对于测试集而言,y_test即是y_true,大部分函数都必须包含真实值 y_true和预测值y_pred. 22 2.Scikit-learn主要用法 评价指标 回归模型评价 metrics.m
    0 码力 | 31 页 | 1.18 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-05机器学习-机器学习实践

    selection),即做模型的最终优化及确定的, 用来辅助我们的模型的构建,即训练超参数,可选; 测试集(Test Set): 为了测试已经训练好的模型的精确度。 三者划分:训练集、验证集、测试集 机器学习:60%,20%,20%;70%,10%,20% 深度学习:98%,1%,1% (假设百万条数据) 1.数据集划分 数据集 训练集 验证集 测试集 5 交叉验证 1. 使用训练集训练出k个模型 2. 用k个模型分别对交叉验证集计算得 用k个模型分别对交叉验证集计算得 出交叉验证误差(代价函数的值) 3. 选取代价函数值最小的模型 4. 用步骤3中选出的模型对测试集计算得出 推广误差(代价函数的值) 6 数据不平衡是指数据集中各类样本数量不均衡的情况. 常用不平衡处理方法有采样和代价敏感学习 采样欠采样、过采样和综合采样的方法 不平衡数据的处理 7 SMOTE(Synthetic Minority Over-sampling 2正则化不同的是,被应用的方 式不同,dropout也会有所不同,甚至更适用于不同的输入范围 keep-prob=1(没有dropout) keep-prob=0.5(常用取值,保留一半神经元) 在训练阶段使用,在测试阶段不使用! Dropout正则化 26 正则化 Early stopping代表提早停止训练神经网络 Early stopping的优点是,只运行 一次梯度下降,你可以找出?的较小 值,中间值和较大值,而无需尝试
    0 码力 | 33 页 | 2.14 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-08机器学习-集成学习

    结果 测试 数据 5 Boosting 训练过程为阶梯状,基模型 按次序一一进行训练(实现 上可以做到并行),基模型 的训练集按照某种策略每次 都进行一定的转化。对所有 基模型预测的结果进行线性 综合产生最终的预测结果。 集成学习 模型n 最终 预测 结果 模型2 预测n …… 预测1 预测2 转化 模型1 模型3 转化 转化 训练 数据 测试 数据 将训练好的所有基模型对训练基进行预测,第j个基模型对第i个训练样本的预测值将作为新的训 练集中第i个样本的第j个特征值,最后基于新的训练集进行训练。同理,预测的过程也要先经过 所有基模型的预测形成新的测试集,最后再对测试集进行预测。 测试 数据 7 Random Forest(随机森林) 用随机的方式建立一个森林。随机森林算法由很多决策树组成,每一棵决 策树之间没有关联。建立完森林后,当有新样本进入时,每棵决策树都会 1. 随机选择样本(放回抽样); 2. 随机选择特征; 3. 构建决策树; 4. 随机森林投票(平均)。 随机森林 训练数据 Bootstrap随机抽取 决策树1 最终预测结果 测试 数据 决策树n …… 决策树2 预测1 预测n …… 预测2 9 随机选择样本和 Bagging 相同,采用的是 Bootstraping 自助采样法;随机选择特征是 指在每个节点在分裂过程中都是随机选择特
    0 码力 | 50 页 | 2.03 MB | 1 年前
    3
共 34 条
  • 1
  • 2
  • 3
  • 4
前往
页
相关搜索词
PyTorch深度学习深度学习入门实战29MNIST测试动手v2连接神经网络神经网神经网络pytorchKeras基于PythonTensorFlow快速验证验证码识别机器课程温州大学05实践Scikitlearn08集成
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩