积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(47)机器学习(47)

语言

全部中文(简体)(46)英语(1)

格式

全部PDF文档 PDF(47)
 
本次搜索耗时 0.069 秒,为您找到相关结果约 47 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 迁移学习-自定义数据集实战

    自定义数据集实战 主讲:龙良曲 Pokemon Go! Pokemon Dataset https://www.pyimagesearch.com/2018/04/16/keras-and-convolutional-neural-networks-cnns/ Download ▪ 链接: https://pan.baidu.com/s/1V_ZJ7ufjUUFZwD2NHSNMFw
    0 码力 | 16 页 | 719.15 KB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-03深度学习-PyTorch入门

    函数(只能是标量)将值取出来:loss_output.item() 1.Tensors张量的概念 8  Tensor与NumPy的异同 对比项 NumPy Tensor 相同点 可以定义多维数组,进行切片、改变维度、 数学运算等 可以定义多维数组,进行切片、改变维度、数学运 算等 不同点 1、产生的数组类型为 numpy.ndarray; 2、会将ndarray放入 CPU中进行运算; 3、导入方式为import Autograd自动求导 03 神经网络 04 训练一个分类器 27 3. 神经网络 可以使用torch.nn包来构建神经网络. 你已知道autograd包,nn包依赖autograd 包来定义模型并求导.一个nn.Module包含各个层和一个forward(input)方法,该 方法返回output。 典型的神经网络 28  神经网络关键组件及相互关系 3. 神经网络 29 autograd. backward Torch.optims .step parallel init nn.ModuleDict 定义网络层 构建网络 前向传播 反向传播 优化参数 3. 神经网络 30 3. 神经网络 神经网络的典型训练过程如下: • 定义神经网络模型,它有一些可学习的参数(或者权重); • 在数据集上迭代; • 通过神经网络处理输入; • 计算损失(输出结果和正确值的差距大小)
    0 码力 | 40 页 | 1.64 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01深度学习-引言

    高等数学-函数的连续性 设函数 y = ? ? 在点?0的某邻域内有定义,如果当自变量的改变量??趋近 于零时,相应函数的改变量Δ?也趋近于零,则称? = ?(?)在点 ?0处连续。 lim Δ?→0Δ? = lim Δ?→0 ? ?0 + Δ? − ? ?0 = 0 33 函数?(?) 在点 处连续,需要满足的条件: 存在 1. 函数在该点处有定义 2. 函数在该点处极限 3. 极限值等于函数值 )⋂? = ?⋂(?⋂?) (3) 分配律:(?⋃?)⋂? = (?⋂?)⋃(?⋂?) (4) 德.摩根律: ?⋃? = ?⋂? ?⋂? = ?⋃? 45 概率论与数理统计-古典型概率 定义:试验?中样本点是有限的,出现每一样本点的概率是相同 。 一袋中有8个球,编号为1-8,其中1-3号为红球,4-8号为黄球, 设摸到每一球的可能性相等,从中随机摸一球,记? ={ 摸到红球 },求 ⚫循环结构 ⚫break、continue和pass ⚫列表生成式 58 Python函数 ⚫调用函数 调用内置函数 ⚫定义函数 def 函数名(): 函数内容 ⚫高阶函数 匿名函数:高阶函数传入函数时,不需要显式地定义函数,直接传入匿名函数更方便 (lambda函数) 59 ⚫NumPy ⚫Pandas ⚫SciPy ⚫Matplotlib
    0 码力 | 80 页 | 5.38 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    2.4 定义模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.2.5 定义损失函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.2.6 定义优化算法 3.3 定义模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 3.3.4 初始化模型参数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 3.3.5 定义损失函数 定义损失函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 ii 3.3.6 定义优化算法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 3.3.7 训练 . . . . . .
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    7.9 反向传播算法实战 7.10 参考文献 第 8 章 PyTorch 高级用法 8.1 常见功能模块 8.2 模型装配、训练与测试 8.3 模型保存与加载 8.4 自定义类 8.5 模型乐园 8.6 测量工具 8.7 可视化 8.8 参考文献 第 9 章 过拟合 9.1 模型的容量 9.2 过拟合与欠拟合 9.3 数据集划分 14.3 策略梯度方法 14.4 值函数方法 14.5 Actor-Critic 方法 14.6 小结 14.7 参考文献 第 15 章 自定义数据集 15.1 精灵宝可梦数据集 15.2 自定义数据集加载流程 15.3 宝可梦数据集实战 15.4 迁移学习 15.5 Saved_model 15.6 模型部署 15.7 参考文献 预览版202112 的升级版本 Cafffe2,Caffe2 目前已经融入到 PyTorch 库中。 ❑ Torch 是一个非常优秀的科学计算库,基于较冷门的编程语言 Lua 开发。Torch 灵活性 较高,容易实现自定义网络层,这也是 PyTorch 继承获得的优良基因。但是由于 Lua 语言使用人群较少,Torch 一直未能获得主流应用。 ❑ MXNet 由华人陈天奇和李沐等人开发,是亚马逊公司的官方深度学习框架。采用了
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-02-数学基础回顾-1.CS229-LinearAlgebra

    或者 表示矩阵 的第 列: 我们用 或者 表示矩阵 的第 行: 在许多情况下,将矩阵视为列向量或行向量的集合非常重要且方便。 通常,在向量而不是标量上 操作在数学上(和概念上)更清晰。只要明确定义了符号,用于矩阵的列或行的表示方式并没有通 用约定。 2.矩阵乘法 两个矩阵相乘,其中 and ,则: 其中: 请注意,为了使矩阵乘积存在, 中的列数必须等于 中的行数。有很多方法可以查看矩阵乘法,我们 的行的线性组合,其中线性组合的系数由 的元素给出。 2.3 矩阵-矩阵乘法 有了这些知识,我们现在可以看看四种不同的(形式不同,但结果是相同的)矩阵-矩阵乘法:也就是 本节开头所定义的 的乘法。 首先,我们可以将矩阵 - 矩阵乘法视为一组向量-向量乘积。 从定义中可以得出:最明显的观点是 的 , 元素等于 的第 行和 的的 列的内积。如下面的公式所示: 这里的 , , , , 这里的 , , , ,所以它们可以计算内积。 的行作为 和 行之间的矩阵 向量积。公式如下: 这里第 行的 由左边的向量的矩阵向量乘积给出: 将矩阵乘法剖析到如此大的程度似乎有点过分,特别是当所有这些观点都紧跟在我们在本节开头给出的 初始定义(在一行数学中)之后。 这些不同方法的直接优势在于它们允许您在向量的级别/单位而不是标量上进行操作。 为了完全理解线 性代数而不会迷失在复杂的索引操作中,关键是要用尽可能多的概念进行操作。 实
    0 码力 | 19 页 | 1.66 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-02-数学基础回顾-2.CS229-Prob

    试图涵盖适用于CS229的概率论基础。概率论的数学理论非常复杂,并且涉及到“分析”的一个分支:测 度论。在这篇笔记中,我们提供了概率的一些基本处理方法,但是不会涉及到这些更复杂的细节。 1. 概率的基本要素 为了定义集合上的概率,我们需要一些基本元素, 样本空间 :随机实验的所有结果的集合。在这里,每个结果 可以被认为是实验结束时现 实世界状态的完整描述。 事件集(事件空间) :元素 的集合(称为事件)是 如果 ,则: (布尔不等式): (全概率定律):如果 , , 是一些互不相交的事件并且它们的并集是 ,那么它们的概率之 和是1 1.1 条件概率和独立性 假设 是一个概率非0的事件,我们定义在给定 的条件下 的条件概率为: 换句话说, )是度量已经观测到 事件发生的情况下 事件发生的概率,两个事件被称为独立事件 当且仅当 (或等价地, )。因此,独立性相当于是说观察到事 件 对于事件 是一个随机变量,表示十次投掷硬币中的正面数,那么 , , , , 。 性质: 2.3 概率密度函数 对于一些连续随机变量,累积分布函数 处可微。在这些情况下,我们将概率密度函数(PDF)定义 为累积分布函数的导数,即: 请注意,连续随机变量的概率密度函数可能并不总是存在的(即,如果它不是处处可微)。 根据微分的性质,对于很小的 , CDF和PDF(当它们存在时!)都可用于计算
    0 码力 | 12 页 | 1.17 MB | 1 年前
    3
  • pdf文档 全连接神经网络实战. pytorch 版

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.1 自定义 Variable 数据与网络训练 19 4.2 准确率的可视化 22 4.3 分类结果的可视化 23 4.4 自定义 Dataset 数据集 25 3 4.5 总结 27 Literature . . . . . . . . . . . . . Dataset 以及 torch.utils.data.DataLoader。 Dataset 存储样本以及它们的标签等信息,Dataset 可以使用预加载的数据集(例如 mnist), 也可以使用自定义的数据集;而 DataLoader 是把样本进行访问和索引的工具,它实现了迭代器 功能,也就是说它可以依次将 batch_size 数量的样本导出。 注意,前面已经导入过的 python 包我们就不再重复导入了。 data import DataLoader 前面说过,Dataset 可以存储自定义数据,我们可以继承 Dataset 类,在子类中实现一些固定 功能的函数,这样就相当于封装了自己的数据为 Dataset 类型。为了方便起见,我们先描述如何 使用预加载数据,然后第二章就开始构建神经网络模型。等第四章我们再描述如何自定义数据集。 我们一次写一个完整的程序来把数据可视化一下: from torchvision
    0 码力 | 29 页 | 1.40 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    29 3.3.6.3 只保存/加载模型的权重 . . . . . . . . . . . . . . . . . . . . . . . . 29 3.3.6.4 处理已保存模型中的自定义层(或其他自定义对象) . . . . . . . 30 3.3.7 为什么训练误差比测试误差高很多? . . . . . . . . . . . . . . . . . . . . . . 31 3.3 137 8.2.5 sparse_top_k_categorical_accuracy . . . . . . . . . . . . . . . . . . . . . . 138 8.3 自定义评价函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 9 优化器 Optimizers 10.1 激活函数的用法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 10.2 预定义激活函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 10.2.1 softmax
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 PyTorch OpenVINO 开发实战系列教程第一篇

    ��������������������������������������������������������������������������������������� 5 1.4.2 张量定义与声明 ����������������������������������������������������������������������������������������������� (functional)、损 失功能、支持自定义的模型类(Module)等。通过它们就可 以实现大多数的模型结构搭建与生成。 2)torch.utils 包,里面主要包括训练模型的输入数据处理类、 pytorch 自带的模型库、模型训练时候可视化支持组件、检查 点与性能相关的组件功能。重要的类有数据集类(Dataset), 数据加载类 (DataLoader)、自定义编程的可视化支持组件 tensorboard 深度学习主要是针对张量的数据操作、这些数据操作从简单到 复杂、多数都是以矩阵计算的形式存在,最常见的矩阵操作就 是加减乘除、此外卷积、池化、激活、也是模型构建中非常有 用的算子 / 操作数。Pytorch 支持自定义算子操作,可以通过 自定义算子实现复杂的网络结构,构建一些特殊的网络模型。 张量跟算子 / 操作数一起构成了计算图,它们是也是计算图的 基本组成要素。 ● 计算图 深度学习是基于计算图完成模型构建,实现数据在各个计算图
    0 码力 | 13 页 | 5.99 MB | 1 年前
    3
共 47 条
  • 1
  • 2
  • 3
  • 4
  • 5
前往
页
相关搜索词
深度学习PyTorch入门实战63迁移定义数据定义数据机器课程温州大学0301引言动手v2深度学习02数学基础回顾CS229LinearAlgebraProb连接神经网络神经网神经网络pytorchKeras基于PythonOpenVINO开发系列教程第一一篇第一篇
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩