积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(18)机器学习(18)

语言

全部中文(简体)(17)英语(1)

格式

全部PDF文档 PDF(18)
 
本次搜索耗时 0.066 秒,为您找到相关结果约 18 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 机器学习课程-温州大学-02-数学基础回顾-1.CS229-LinearAlgebra

    备注:请关注github的更新,线性代数和概率论已经更新完毕。 CS229 机器学习课程复习材料-线性代数 CS229 机器学习课程复习材料-线性代数 线性代数复习和参考 1. 基础概念和符号 1.1 基本符号 2.矩阵乘法 2.1 向量-向量乘法 2.2 矩阵-向量乘法 2.3 矩阵-矩阵乘法 3 运算和属性 3.1 单位矩阵和对角矩阵 3.2 转置 3.3 对称矩阵 3.4 矩阵微积分 4.1 梯度 4.2 黑塞矩阵 4.3 二次函数和线性函数的梯度和黑塞矩阵 4.4 最小二乘法 4.5 行列式的梯度 4.6 特征值优化 线性代数复习和参考 1. 基础概念和符号 线性代数提供了一种紧凑地表示和操作线性方程组的方法。 例如,以下方程组: 这是两个方程和两个变量,正如你从高中代数中所知,你可以找到 和 的唯一解(除非方程以某 种方式退化,例如 我们可以看到,这种形式的线性方程有许多优点(比如明显地节省空间)。 1.1 基本符号 我们使用以下符号: ,表示 为由实数组成具有 行和 列的矩阵。 ,表示具有 个元素的向量。 通常,向量 将表示列向量: 即,具有 行和 列的矩阵。 如果 我们想要明确地表示行向量: 具有 行和 列的矩阵 - 我们通常写 (这里 的转置)。 表示向量 的第 个元素 我们使用符号 (或 , 等)来表示第 行和第 列中的
    0 码力 | 19 页 | 1.66 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    2.0.0 Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola Aug 18, 2023 目录 前言 1 安装 9 符号 13 1 引言 17 2 预备知识 39 2.1 数据操作 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 编译器和解释器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503 12.1.1 符号式编程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504 12.1.2 混合式编程 运行时环境。要退出环境,请运行conda deactivate。 Discussions10 10 https://discuss.d2l.ai/t/2083 目录 11 12 目录 符号 本书中使用的符号概述如下。 数字 • x:标量 • x:向量 • X:矩阵 • X:张量 • I:单位矩阵 • xi, [x]i:向量x第i个元素 • xij, [X]ij:矩阵X第i行第j列的元素
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    False)。如果为 True,则批次中索引 i 处的每个样品的最后状态将用 作下一批次中索引 i 样品的初始状态。 • unroll: 布尔值 (默认 False)。如果为 True,则网络将展开,否则将使用符号循环。展开可以 加速 RNN,但它往往会占用更多的内存。展开只适用于短序列。 • input_dim: 输入的维度(整数)。将此层用作模型中的第一层时,此参数(或者,关键字参 数 input_shape)是必需的。 shuffle=False。 要重置模型的状态,请在特定图层或整个模型上调用 .reset_states()。 关于指定 RNN 初始状态的注意事项 您可以通过使用关键字参数 initial_state 调用它们来符号化地指定 RNN 层的初始状态。 initial_state 的值应该是表示 RNN 层初始状态的张量或张量列表。 您可以通过调用带有关键字参数 states 的 reset_states 方法来数字化地指定 False)。如果为 True,则批次中索引 i 处的每个样品的最后状态将用 作下一批次中索引 i 样品的初始状态。 • unroll: 布尔值 (默认 False)。如果为 True,则网络将展开,否则将使用符号循环。展开可以 加速 RNN,但它往往会占用更多的内存。展开只适用于短序列。 5.6.3 GRU [source] keras.layers.GRU(units, activation='tanh'
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    础要求较少的,读者在学习本书的过程中会自然而然地了解算法的相关背景知识,体会到知 识是为了解决问题而生的,避免陷入为了学习而学习的窘境。 尽管作者试图将读者的基础要求降到最低,但是人工智能不可避免地需要使用正式化的 数学符号推导,其中涉及到少量的概率与统计、线性代数、微积分等数学知识,一般要求读 者对这些数学知识有初步印象或了解即可。比起理论基础,读者需要有少量的编程经验,特 别是 Python 语言编程经验,显得更加 PyTorch 继承获得的优良基因。但是由于 Lua 语言使用人群较少,Torch 一直未能获得主流应用。 ❑ MXNet 由华人陈天奇和李沐等人开发,是亚马逊公司的官方深度学习框架。采用了 命令式编程和符号式编程混合方式,灵活性高,运行速度快,文档和案例也较为丰 富。 ❑ Keras 是一个基于 Theano 和 TensorFlow 等框架提供的底层运算而实现的高层框架, 提供了大量快速训练、 ❑ TensorFlow 是 Google 于 2015 年发布的深度学习框架,最初版本只支持符号式编程。 得益于发布时间较早,以及 Google 在深度学习领域的影响力,TensorFlow 很快成为最 流行的深度学习框架。但是由于 TensorFlow 接口设计频繁变动,功能设计重复冗余, 符号式编程开发和调试非常困难等问题,TensorFlow 1.x 版本一度被业界诟病。2019 年,Google
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-06深度学习-优化算法

    atch的微分??,??,所以我会 保留这个指数加权平均数,我们用到新符号??? ,而不是??? ,因此??? = ???? + (1 − ?)??2,澄清一下,这个平方的操作是针对这一整个符号的,这样做 能够保留微分平方的加权平均数,同样??? = ???? + (1 − ?)??2,再说一次,平 方是针对整个符号的操作。 接着RMSprop会这样更新参数值,?: = ? − ? ?
    0 码力 | 31 页 | 2.03 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-10深度学习-人脸识别与风格迁移

    ?)),或者使左边这个式子 (?(?, ?))变小,这样左右两边至少有一个?的间隔。 15 1.人脸识别概述 用Triplet 损失训练 16 1.人脸识别概述 人脸识别与二分类 符号?(?(?))?代表图片?(?)的编码,下标?代表选择这个向量中的第?个元素, |?(?(?))? − ?(?(?))?|对这两个编码取元素差的绝对值 ?2公式,公式可以是?2 = (?(?( (?(?))?| + ?) 17 1.人脸识别概述 用Triplet 损失训练 ̰? = ?(෍ ?=1 128 ??|?(?(?))? − ?(?(?))?| + ?) 我解释一下,符号?(?(?))?代表图片?(?)的编 码,下标?代表选 18 1.人脸识别概述 FaceNet Inception-ResNet-v2网络简化示意图 https://github.com/
    0 码力 | 34 页 | 2.49 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-02-数学基础回顾-2.CS229-Prob

    取有限种可能值(即, 是离散随机变量)时,表示与随机变量相关联的概率度量的更简单 的方法是直接指定随机变量可以假设的每个值的概率。特别地,概率质量函数(PMF)是函数 ,这样: 在离散随机变量的情况下,我们使用符号 表示随机变量 可能假设的一组可能值。例如,如果 是一个随机变量,表示十次投掷硬币中的正面数,那么 , , , , 。 性质: 2.3 概率密度函数 对于一些连续随机变量,累积分布函数 假设我们有n个随机变量。当把所有这些随机变量放在一起工作时,我们经常会发现把它们放在一个向 量中是很方便的...我们称结果向量为随机向量(更正式地说,随机向量是从 到 的映射)。应该清楚的 是,随机向量只是处理 个随机变量的一种替代符号,因此联合概率密度函数和综合密度函数的概念也 将适用于随机向量。 期望: 考虑 中的任意函数。这个函数的期望值 被定义为 其中, 是从 到 的 个连续积分。如果 是从 到 的函数,那么 的期望值是输出向量的元
    0 码力 | 12 页 | 1.17 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01深度学习-引言

    、文本摘要、文本分类、文本校对、信息抽取、语音合成、语音识 别等。 可以说,自然语言处理就是要计算机理解自然语言,自然 语言处理机制涉及 两个流程,包括自然语言理解和自然语言生成 ,自然语言理解是让计算机把 输入的语言变成有意思的符号和关 系,然后根据目的再处理;自然语言生成 则是把计算机数据转 化为自然语言。实现人机间的信息交流,是人工智能 界、计算 机科学和语言学界所共同关注的重要问题。 自然语言处理技术的技术层次 自然语言处理技术的发展历程 用来存储一连串元素的容器,列表用[ ]来表示,其中元素的类型可不相同。 ⚫元组(tuple) 元组类似列表,元组里面的元素也是进行索引计算。列表里面的元素的值可以修改,而元组 里面的元素的值不能修改,只能读取。元组的符号是( ) ⚫集合(set) 集合主要有两个功能,一个功能是进行集合操作,另一个功能是消除重复元素。 集合的格式 是:set( ),其中()内可以是列表、字典或字符串,因为字符串是以列表的形式存储的
    0 码力 | 80 页 | 5.38 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-11深度学习-序列模型

    序列模型概述 02 循环神经网络(RNN) 05 深层循环神经网络 4 1.序列模型概述 循环神经网络(RNN)之类的模型在语音识别、自然语言处理和 其他领域中引起变革。 5 数学符号 在这里?<1>表示Harry这个单词,它就是一个第 4075行是1,其余值都是0的向量(上图编号1所示 ),因为那是Harry在这个词典里的位置。 ?<2>是第6830行是1,其余位置都是0的向量(上
    0 码力 | 29 页 | 1.68 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-02深度学习-神经网络的编程基础

    梯度下降 03 计算图 04 向量化 3 1.二分类与逻辑回归 02 梯度下降 01 二分类与逻辑回归 03 计算图 04 向量化 4 符号定义 ?:表示一个??维数据,为输入数 据,维度为(??, 1); ?:表示输出结果,取值为(0,1); (?(?), ?(?)):表示第?组数据; ? = [?(1), ?(2),
    0 码力 | 27 页 | 1.54 MB | 1 年前
    3
共 18 条
  • 1
  • 2
前往
页
相关搜索词
机器学习课程温州大学02数学基础回顾CS229LinearAlgebra动手深度v2Keras基于PythonPyTorch深度学习06优化算法10人脸识别人脸识别风格迁移Prob01引言11序列模型神经网络神经网神经网络编程
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩