积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(44)机器学习(44)

语言

全部中文(简体)(43)英语(1)

格式

全部PDF文档 PDF(44)
 
本次搜索耗时 0.046 秒,为您找到相关结果约 44 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 机器学习课程-温州大学-时间序列总结

    1 2022年01月 时间序列总结 黄海广 副教授 2 学习目标 了解 什么是时间序 列,ARIMA 1 2 掌握 时间序列的基本 操作 掌握 时期,重采样 3 4 熟悉 滑动窗口的使用 3 目录 01 时间序列的基本操作 02 固定频率的时间序列 03 时间周期及计算 04 重采样 05 数据统计—滑动窗口 06 时序模型—ARIMA 4 1.时间序列的基本操作 01 时间序列的基本操作 02 固定频率的时间序列 03 时间周期及计算 04 重采样 05 数据统计—滑动窗口 06 时序模型—ARIMA 5 问题 思考: 什么是时间序列? 6 时间序列的概念 时间序列是指多个时间点上形成的数值序列,它既可 以是定期出现的,也可以是不定期出现的。 7 时间序列的数据种类 时间序列的数据种类 时间序列的数据主要有以下几种: 时间戳 表示特定的时刻 ,比如现在 时期 比如2018年或者 2018年10月 时间间隔 由起始时间戳和 结束时间戳表示 8 创建时间序列 Pandas中,时间戳使用Timestamp(Series派生的子 类)对象表示。 该对象与datetime具有高度的兼容性,可以直接通过 to_datetime()函数将datetime转换为TimeStamp对象。
    0 码力 | 67 页 | 1.30 MB | 1 年前
    3
  • pdf文档 时间序列预测

    时间序列预测 主讲人:龙良曲 Predict next Sample data Network Train Predict 下一课时 RNN训练难题 Thank You.
    0 码力 | 9 页 | 572.18 KB | 1 年前
    3
  • pdf文档 时间序列表示

    时间序列表示 主讲人:龙良曲 Spatial Signals Temporal Signals? Sequence http://slazebni.cs.illinois.edu/spring17/lec02_rnn.pdf Sequence representation ▪ [seq_len, feature_len] [100, 1] [28, 28] [words, word_vec]
    0 码力 | 14 页 | 1.16 MB | 1 年前
    3
  • pdf文档 杨赛赛-基于深度学习的多维时间序列预测在数据机房中的应用

    PYCON CHINA 基于深度学习的多维时间序列 预测在数据机房中的应用 目 录 1 背景介绍 2 研究目标 3 研究内容 4 后续工作 1. 背景介绍 数据机房面临的能耗问题 数据机房面临电量消耗巨大的问题 空调是数据机房中电量消耗最大的设备 空调为什么那么耗电?怎么优化节能? 低效的 冷却装 置 服务主 机工作 发热 影响空 调耗电 量原因 建筑材料 隔热和散 预测控制 节能调节 3. 研究内容 ⚫ 时间序列预测方法的比较 传统时间序列预测 ⚫ 对单个维度历史信息进行 预测 ⚫ 捕获简单线性关系,模型 简单 ⚫ 代表算法有AR, ARIMA 基于深度学习的 时间序列预测 ⚫ 利用多维时间序列之间的 信息 ⚫ 对变周期序列,多维空间 依赖序列预测较弱 ⚫ 代表算法有RNN,LSTM 混合多维时间序列预测 ⚫ 提取多维序列之间更加复杂 的关系 的关系 ⚫ 提取维度之间空间依赖关系, 长短期依赖关系 ⚫ 算法有LSTNet,TPA-LSTM 多维时间序列预测方法解决机房温度预测 对数据包含的信息提取能力越来越强 选择 LSTNet 作为温度预测建模算法 ⚫ Convolutional Layer 捕捉时间维度上的短期依赖和维度之间的空间依赖关系 ⚫ Recurrent and Recurrent-skip layer 捕捉长期宏观依赖和周期性信息
    0 码力 | 17 页 | 2.49 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    8.7 通过时间反向传播 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329 8.7.1 循环神经网络的梯度分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330 8.7.2 通过时间反向传播的细节 一维卷积 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 712 15.3.2 最大时间汇聚层 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714 15.3.3 textCNN模型 一种结合了代码、数学和HTML的媒介 任何一种计算技术要想发挥其全部影响力,都必须得到充分的理解、充分的文档记录,并得到成熟的、维护 良好的工具的支持。关键思想应该被清楚地提炼出来,尽可能减少需要让新的从业者跟上时代的入门时间。 成熟的库应该自动化常见的任务,示例代码应该使从业者可以轻松地修改、应用和扩展常见的应用程序,以 满足他们的需求。以动态网页应用为例。尽管许多公司,如亚马逊,在20世纪90年代开发了成功的数据库驱
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 经典算法与人工智能在外卖物流调度中的应用

    引言:外卖配送的背后 2 引言:外卖订单调度系统要考虑的因素 3 订单相关 骑士相关 • 商户、用户位置 • 用户期望时间 • 预计出餐时间.. • 现有订单的配送路线 • 新增订单后配送路线的改变情况 • 历史取送餐速度 • 完成每个订单的预计时间 • 熟悉的区域 • 配送工具 • 装载情况.. 环境相关 • 当前配送的繁忙程度 • 天气情况.. 1 2 3 订单云端分组 整体最优分配 调度 系统 4.0 深度学习智能模式 • 出餐时间估算更准,缩短 骑士到店等待时间,节省 运力,提升用户等餐体验 出餐时间预估 深度学习智能 调度 系统 2.0 系统派单模式 • 系统综合考虑配送距离、 骑士运力、期望送达时间 等因素来自动派单 配送距离 期望送达时间 骑士运力 订单相似度 调度 系统 1.0 外卖订单智能调度要解决的核心问题 考虑用户期望时间的TSP问题 • 构建模型综合评估用户体验与配 送成本打分 • 采用动态规划和模拟退火算法等 算法,求得最优路线 1 8 时间预估 用户下单 开始配送 骑士到店 骑士取餐 到达用户 完成交付 商户接单 商户出餐 到店时间 出餐时间 送餐时间 交付时间 等餐时间 2 到达识别,交付时间计算 数据积累,异常数据剔除 网格建立,分时段统计 交付时间预估 取餐/送餐分别回归拟合
    0 码力 | 28 页 | 6.86 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-特征工程

    低计算复杂度 目的:确保不丢失重要的特征 4. 特征选择 26 许永洪,吴林颖.中国各地区人口特征和房价波动的动态关系[J].统计研究,2019,36(01) 模型性能 • 保留尽可能多的特征,模型 的性能会提升 • 但同时模型就变复杂,计算 复杂度也同样提升 计算复杂度 • 剔除尽可能多的特征,模型的 性能会有所下降 • 但模型就变简单,也就降低计 算复杂度 VS 统计研究,2019,36(01) 原理:先对数据集进行特征选择,然后再训练学习器 特征选择过程与后续学习器无关 也就是先采用特征选择对初始特征进行过滤,然后用过滤后的特征 训练模型 优点:计算时间上比较高效,而且对过拟合问题有较高的鲁棒性 缺点:倾向于选择冗余特征,即没有考虑到特征之间的相关性 过滤式 4. 特征选择 29 许永洪,吴林颖.中国各地区人口特征和房价波动的动态关系[J] 集的评价标准。 ➢ 由于 LVW 算法中每次特征子集评价都需要 训练学习器,计算开销很大,因此它会设 计一个停止条件控制参数 T。但是如果初始 特征数量很多、T 设置较大、以及每一轮训 练的时间较长, 则很可能算法运行很长时 间都不会停止。 1. LVW 包裹式 4. 特征选择 特征集A 子集A1 误差是否更小 特征数是否更少 保留子集 交叉验证 提取子集 否 误差更大
    0 码力 | 38 页 | 1.28 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01机器学习-引言

    入 Facebook AI Research(FAIR)担任研究科 学家。 主要贡献:设计了ResNets 8 国内外知名人工智能企业榜单 编码 企业名称 人工智能技术 应用领域 所属国家 成立时间 资本市场状态 市值/估值/融资额 1 Microsoft(微软) 计算机视觉技术、自然语言处理技术 等 办公 美国 1975年 上市 市值1.21万亿美元 2 Google(谷歌) 计算机视觉技术、自然语言处理技术 “过拟合”的问题。 为此,我们再原有基础上加上用于控制模型复杂度的正则项(Regularizer),得到结构最小化准 则。具体定义是: 其中,?(?)代表对模型复杂度的惩罚。模型越复杂,?(?)越大,模型越简单,?(?)就越小。?是 一个正的常数,也叫正则化系数,用于平衡经验风险和模型复杂度。 一般来说,结构风险小的模型需要经验风险和模型复杂度同时小,因此对训练数据和测试数据 都能有较好的拟合。 注意:安装路径尽量不使用带有 中文或空格 的目录,这样在之后的使用过程 中减少一些莫名的错误。 Python 的环境的安装 54 Python 的主要数据类型 ⚫字符串 ⚫整数与浮点数 ⚫布尔值 ⚫日期时间 ⚫其它 55 Python 的数据结构 ⚫列表(list) 用来存储一连串元素的容器,列表用[ ]来表示,其中元素的类型可不相同。 ⚫元组(tuple) 元组类似列表,元组里面的元素也
    0 码力 | 78 页 | 3.69 MB | 1 年前
    3
  • pdf文档 搜狗深度学习技术在广告推荐领域的应用

    特征组合 MxNet TensorFlow Wide&Deep 去噪 特征自动组合 (FM) 特征设计 离散特征 离散特征 容易设计;刻画细致;特 征稀疏; 特征量巨大;模型复杂度 受限 连续特征 连续特征 需要仔细设计;定长;特 征稠密 特征量相对较小,可以 使用多种模型训练 模型类别 模型类别 线性  简单、处理特征 量大、稳定性好  需借助交叉特征 实验方案较多,改进空间较大 模型融合 模型融合的工程实现 • 可支持多个不同模型的加载和计算 • 可支持模型之间的交叉和CTR的bagging • 可通过配置项随时调整模型融合方案 • 避免不必要的重复操作,减少时间复杂度 目标 • 模型本身也看做一个抽象特征 • 模型特征依赖于其它特征,通过计算得到新的特征 • 模型特征输出可作为CTR,也可作为特征为其它模型使用 • 限定ModelFeature的计算顺序,即可实现bagging/模型交叉等功能 使用成本低  构 建 多 机 多 卡 GPU集群,优化 训练效率,提高 加速比 现状和计划 现状  已经实现LR+DNN融合模型的上线,收益较好  受限于线上计算资源,模型复杂度有限  线下训练流程有依赖,繁琐易出错 计划  线上服务拆分,独立出深度学习计算模块,采用低功耗GPU加速  支撑更宽、更深、更复杂的网络结构  采用Wide & Deep,线下训练流程解耦
    0 码力 | 22 页 | 1.60 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-02机器学习-回归

    ,需要多次迭代,当特征数量?大时也能较 好适用,适用于各种类型的模型。 最小二乘法:不需要选择学习率?,一次计算得出,需要计算 ??? −1 ,如果特征数量?较大则运算代价大,因为矩阵逆的计算时间复杂度为 ?(?3),通常来说当?小于10000 时还是可以接受的,只适用于线性模型 ,不适合逻辑回归模型等其他模型。 19 数据归一化/标准化 ?1 ?2 梯度 ?1 ?2 梯度 欠拟合的处理 1.添加新特征 当特征不足或者现有特征与样本标签的相关性不强时,模型容易出现欠拟合。通 过挖掘组合特征等新的特征,往往能够取得更好的效果。 2.增加模型复杂度 简单模型的学习能力较差,通过增加模型的复杂度可以使模型拥有更强的拟合能 力。例如,在线性模型中添加高次项,在神经网络模型中增加网络层数或神经元 个数等。 3.减小正则化系数 正则化是用来防止过拟合的,但当模型出现欠拟合现象时,则需要有针对性地减
    0 码力 | 33 页 | 1.50 MB | 1 年前
    3
共 44 条
  • 1
  • 2
  • 3
  • 4
  • 5
前往
页
相关搜索词
机器学习课程温州大学时间序列总结深度PyTorch入门实战49预测46表示13杨赛赛基于多维数据数据机房中应用动手v2经典算法人工智能人工智能外卖物流调度特征工程01引言搜狗技术广告推荐领域02回归
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩