Keras: 基于 Python 的深度学习库
LSTM 模型 . . . . . . . . . . . . 15 3.2 函数式 API 指引 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2.1 开始使用 Keras 函数式 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.2 Sequential 顺序模型 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.2.1 Sequential 顺序模型 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.3 函数式 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.3.1 Model 类 API . . . . . . . . . . . . . . . . . . . . . . .0 码力 | 257 页 | 1.19 MB | 1 年前3华为云深度学习在文本分类中的实践-李明磊
Testing Vocab Sequence labeling Huawei tokenizer word2vec Elmo pb ckpt H5 (Keras) RESTful API RPC API Function test Concurrence test Security test Multi class Multi label preprocessor Traditional expressed or implied in the predictive statements. Therefore, such information is provided for reference purpose only and constitutes neither an offer nor an acceptance. Huawei may change the information0 码力 | 23 页 | 1.80 MB | 1 年前3PyTorch Tutorial
Advantages (continued) • Which one do you think is better? PyTorch! • Easy Interface − easy to use API. The code execution in this framework is quite easy. Also need a fewer lines to code in comparison ionic cluster • https://oncomputingwell.princeton.edu/2018/05/jupyter-on-the-cluster/ • Best reference is PyTorch Documentation • https://pytorch.org/ and https://github.com/pytorch/pytorch • Good Blogs:0 码力 | 38 页 | 4.09 MB | 1 年前3《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction
production. BERT is used in Google Search to improve relevance of results, and GPT-3 is available as an API for interested users to consume. Having demonstrated the rapid growth of deep learning models, let with accelerators that can be used for fast inference on-devices. The EdgeTPU (see Figure 1-18 for reference) , like the TPU, specialized in accelerating linear algebra operations, but only for inference and0 码力 | 21 页 | 3.17 MB | 1 年前3PyTorch Release Notes
highly optimized modules for popular Transformer architectures and an automatic mixed precision-like API that can be used seamlessly with your PyTorch code. ‣ A preview of Torch-TensorRT (1.4.0dev0) is now highly optimized modules for popular Transformer architectures and an automatic mixed precision-like API that can be used seamlessly with your PyTorch code. PyTorch Release 23.06 PyTorch RN-08516-001_v23 highly optimized modules for popular Transformer architectures and an automatic mixed precision-like API that can be used seamlessly with your PyTorch code. ‣ NVIDIA Deep Learning Profiler (DLProf) v1.80 码力 | 365 页 | 2.94 MB | 1 年前3动手学深度学习 v2.0
3 提交主要更改 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 764 16.6 d2l API 文档 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 767 16.6 些情况下,我们通常会提供两个版本的示例:一个是我们从零开始实现一切,仅依赖张量操作和自动微分; 另一个是更实际的示例,我们使用深度学习框架的高级API编写简洁的代码。一旦我们教了您一些组件是如 何工作的,我们就可以在随后的教程中使用高级API了。 内容和结构 全书大致可分为三个部分,在 图1 中用不同的颜色呈现: 目录 3 图1: 全书结构 • 第一部分包括基础知识和预备知识。1节 经被TensorFlow26 (通常通过其高级API Keras27使用)、CNTK28、Caffe 229和Apache MXNet30所取代。第三代工具,即用 于深度学习的命令式工具,可以说是由Chainer31率先推出的,它使用类似于Python NumPy的语法来 描述模型。这个想法被PyTorch32、MXNet的Gluon API33和Jax34都采纳了。 “系统研究人员构建更0 码力 | 797 页 | 29.45 MB | 1 年前3【PyTorch深度学习-龙龙老师】-测试版202112
2017 年开始, Keras 的大部分组件被整合到 TensorFlow 框架中。2019 年,在 TensorFlow 2 版本中,Keras 被正式确定为 TensorFlow 的高层唯一接口 API,取代了 TensorFlow 1 版本中自带的 tf.layers 等高层接口。也就是说,现在只能使用 Keras 的接口来完成 TensorFlow 层方式的 模型搭建与训练。在 TensorFlow TensorFlow 中,Keras 被实现在 tf.keras 子模块中。 Keras 与 tf.keras 有什么区别与联系呢?其实 Keras 可以理解为一套搭建与训练神经网 络的高层 API 协议,Keras 本身已经实现了此协议,安装标准的 Keras 库就可以方便地调用 TensorFlow、CNTK 等后端完成加速计算;在 TensorFlow 中,也实现了一套 Keras 协议, 即 tf 息,不需要提前 创建模型即可直接从文件中恢复出网络 network 对象。 8.3.3 SavedModel 方式 TensorFlow 之所以能够被业界青睐,除了优秀的神经网络层 API 支持之外,还得益于 它强大的生态系统,包括移动端和网页端等的支持。当需要将模型部署到其他平台时,采 用 TensorFlow 提出的 SavedModel 方式更具有平台无关性。 通过 tf0 码力 | 439 页 | 29.91 MB | 1 年前3PyTorch Brand Guidelines
its entirety maintaining legibility and clarity. We use the circular dot as a measurement reference for clear space surrounding the symbol. Please keep at least 1/2 distance of the symbol’s width social media posts, please reference the digital RGB or hex code equivalent. When printing, please use CMYK or the listed Pantone code. For UI button elements, please reference “Color Variations for When applying color in the digital environment; web, app, and social media posts, please reference the digital RGB or hex code equivalent. When printing, please use CMYK or the listed Pantone0 码力 | 12 页 | 34.16 MB | 1 年前3机器学习课程-温州大学-numpy使用总结
ufunc:全称(universal function object)它是一种能够对数组进行处 理的函数。 NumPy的官方文档: https://docs.scipy.org/doc/numpy/reference/ NumPy是什么? 7 Anaconda里面已经安装过NumPy。 原生的Python安装: · 在cmd中输入 安装之后,我们用导入这个库 > import numpy as0 码力 | 49 页 | 1.52 MB | 1 年前3AI大模型千问 qwen 中文文档
下,我们将展示如何使用 vLLM 构建一个与 OpenAI API 兼容的 API 服务。 首先,确保你已经安装 vLLM>=0.3.0 : pip install vllm 运行以下代码以构建 vllm 服务。此处我们以 Qwen1.5-7B-Chat 为例: python -m vllm.entrypoints.openai.api_server --model Qwen/Qwen1.5-7B-Chat OpenAI's API key and API base to use vLLM's API server. openai_api_key = "EMPTY" openai_api_base = "http://localhost:8000/v1" client = OpenAI( (续下页) 1.2. 快速开始 5 Qwen (接上页) api_key=openai_api_key, b base_url=openai_api_base, ) chat_response = client.chat.completions.create( model="Qwen/Qwen1.5-7B-Chat", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content":0 码力 | 56 页 | 835.78 KB | 1 年前3
共 30 条
- 1
- 2
- 3