全连接神经网络实战. pytorch 版
dataloader . dataset ) # 10000 print ( f ” s i z e :{ s i z e }” ) num_batches = len ( dataloader ) print ( f ”num_batches :{ num_batches}” ) test_loss , correct = 0 , 0 with torch . no_grad () : f o r correct += ( pred . argmax (1) == y) . type ( torch . f l o a t ) . sum() . item () test_loss /= num_batches cor rect /= s i z e print ( f ” Test␣ Error : ␣\n␣Accuracy : ␣ {(100∗ cor rec t ) : >0.1 f }%,␣Avg␣0 码力 | 29 页 | 1.40 MB | 1 年前3动手学深度学习 v2.0
Animator(xlabel='epoch', xlim=[1, num_epochs], legend=['train loss', 'train acc', 'test acc']) timer, num_batches = d2l.Timer(), len(train_iter) for epoch in range(num_epochs): # 训练损失之和,训练准确率之和,样本数 metric = d2l metric[2] if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1: (continues on next page) 244 6. 卷积神经网络 (continued from previous page) animator.add(epoch + (i + 1) / num_batches, (train_l, train_acc 返回从pos位置开始的长度为num_steps的序列 return corpus[pos: pos + num_steps] num_batches = num_subseqs // batch_size for i in range(0, batch_size * num_batches, batch_size): # 在这里,initial_indices包含子序列的随机起始索引 initial_indices_per_batch0 码力 | 797 页 | 29.45 MB | 1 年前3Machine Learning Pytorch Tutorial
Dataloader: groups data in batches, enables multiprocessing ● dataset = MyDataset(file) ● dataloader = DataLoader(dataset, batch_size, shuffle=True) More info about batches and shuffling here. Dataset0 码力 | 48 页 | 584.86 KB | 1 年前3PyTorch Tutorial
TensorDataset Dataloader • Dataloader • What happens if we have a huge dataset? Have to train in 'batches' • Use PyTorch's Dataloader class! • We tell it which dataset to use, the desired mini-batch size0 码力 | 38 页 | 4.09 MB | 1 年前3Keras: 基于 Python 的深度学习库
range(epochs): print('Epoch', e) batches = 0 for x_batch, y_batch in datagen.flow(x_train, y_train, batch_size=32): model.fit(x_batch, y_batch) batches += 1 if batches >= len(x_train) / 32: # 我们需要手动打破循环,0 码力 | 257 页 | 1.19 MB | 1 年前3《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques
function, or outside it. This is crucial for deep learning applications which frequently operate on batches of data. Using vectorized operations also speeds up the execution (and this book is about efficiency0 码力 | 33 页 | 1.96 MB | 1 年前3keras tutorial
[1., 1.]], dtype=float32) batch_dot It is used to perform the product of two data in batches. Input dimension must be 2 or higher. It is shown below: >>> a_batch = k.ones(shape=(2,3)) >>>0 码力 | 98 页 | 1.57 MB | 1 年前3
共 7 条
- 1