积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(8)机器学习(8)

语言

全部英语(5)中文(简体)(3)

格式

全部PDF文档 PDF(8)
 
本次搜索耗时 0.047 秒,为您找到相关结果约 8 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    learning models today, how to think about it in terms of metrics that you care about, and finally the tools at your disposal to achieve what you want. The subsequent chapters will delve deeper into techniques pareto-frontier. Our goal with efficient deep learning is to have a collection of algorithms, techniques, tools, and infrastructure that work together to allow users to train and deploy pareto-optimal models that is illustrated in Figure 1-6. As mentioned earlier, with this book we’ll strive to build a set of tools and techniques that can help us make models pareto-optimal and let the user pick the right tradeoff
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    instruction" }, { "from": "gpt", "value": "model response" } ], "system": "system prompt (optional)", "tools": "tool description (optional)" } ] 2. 在 data/dataset_info.json 文件中提供您的数据集定义,并采用以下格式: 1.12. 有监督微调 json", "formatting": "sharegpt", "columns": { "messages": "conversations", "system": "system", "tools": "tools" }, "tags": { "role_tag": "from", "content_tag": "value", "user_tag": "user", "assistant_tag": import os import json5 import urllib.parse from qwen_agent.agents import Assistant from qwen_agent.tools.base import BaseTool, register_tool llm_cfg = { # Use the model service provided by DashScope: 'model':
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 PyTorch Tutorial

    Tensors • Autograd • Modular structure • Models / Layers • Datasets • Dataloader • Visualization Tools like • TensorboardX (monitor training) • PyTorchViz (visualise computation graph) • Various other
    0 码力 | 38 页 | 4.09 MB | 1 年前
    3
  • pdf文档 Experiment 1: Linear Regression

    ���� The vectorized version is useful and efficient when you’re working with numerical computing tools like Matlab/Octave. If you are familiar with matrices, you can prove to yourself that the two forms
    0 码力 | 7 页 | 428.11 KB | 1 年前
    3
  • pdf文档 深度学习下的图像视频处理技术-沈小勇

    Enhancement Input “Auto Enhance” on iPhone “Auto Tone” in Lightroom Ours Existing Photo Editing Tools Retinex-based Methods • LIME: [TIP 17] • WVM: [CVPR 16] • JieP: [ICCV 17] Learning-based Methods
    0 码力 | 121 页 | 37.75 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    Learning models: (a) lower model size, and (b) lower inference latency. We already have the necessary tools for achieving (a), the lower model size. Let us see how we can apply what we learnt for quantizing
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    era). Techniques like Principal Components Analysis, Low-Rank Matrix Factorization, etc. are popular tools for dimensionality reduction. We will explain these techniques in further detail in chapter 6. A
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    Notebook中编辑它。进行更改并检查它们 是否正常。假设我们已经修改了文件~/d2l-en/chapter_appendix_tools/how-to-contribute.md中的一个拼 写错误。你可以检查你更改了哪些文件。 此时,Git将提示chapter_appendix_tools/how-to-contribute.md文件已被修改。 mylaptop:d2l-en me$ git status changes in working directory) modified: chapter_appendix_tools/how-to-contribute.md 16.5. 为本书做贡献 765 在确认这是你想要的之后,执行以下命令: git add chapter_appendix_tools/how-to-contribute.md git commit -m 'fix typo in git
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
共 8 条
  • 1
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterIntroductionAI模型千问qwen中文文档PyTorchTutorialExperimentLinearRegression深度学习图像视频处理技术沈小勇CompressionTechniquesArchitectures动手v2
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩