积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(16)机器学习(16)

语言

全部英语(9)中文(简体)(7)

格式

全部PDF文档 PDF(16)
 
本次搜索耗时 0.025 秒,为您找到相关结果约 16 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    Turns out, using learning techniques to improve sample and label efficiency, often helps to make resource efficient models feasible. By feasible, we mean that the model meets the bar for quality metrics be expensive when using very large models. def distillation_loss_fn(y_true_combined, y_pred): """Custom distillation loss function.""" # We will split the y tensor to extract the ground-truth and the model_pred) opt = keras.optimizers.Adam(learning_rate=learning_rate) # Compile the model with the custom loss function and metric. model.compile( loss=distillation_loss_fn, metrics=[categorical_accuracy]
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    available computational budget. They can be increased as more resources become available or reduced in resource constrained situations. The likelihood of finding the optimal increases with the number of trials and resources. Alternatively, we can base the search approach on the budget allocation to cap the resource utilization. Multi-Armed Bandit based algorithms allocate a finite amount of resources to a set contrast to the bracket 0, subsequent brackets start with a smaller set of configurations and higher resource allocation per configuration. This ensures that we try successive halves with various values of
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    choice of the technique depends on several factors like customer preference, consumption delay, or resource availability (extra hands needed for chopping). Personally, I like full apples. Let’s move on from transmission bandwidth is expensive like deep learning models on mobile devices. Mobile devices are resource constrained. Hence, quantization can help to deploy models which would otherwise be too big to shrink the model sizes with an acceptable loss of precision. A smaller model size can be deployed in resource constrained environments like the mobile devices. Quantization has enabled a whole lot of models
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 TensorFlow on Yarn:深度学习遇上大数据

    TensorFlow on Yarn技术细节揭秘 Yarn支持GPU调度ResourceManager端实现:� 扩展org.apache.hadoop.yarn.api.records.Resource抽象类及其实现,增加:� � public abstract int getGpuCores();� � public abstract void setGpuCores(int gCores);� nodemanager.resource.gpu-cores ((2,2))� � � NodeManager上可用的GPU卡数是: 2 + 2 = 4� � � � yarn.nodemanager.resource.gpu-cores
    0 码力 | 32 页 | 4.06 MB | 1 年前
    3
  • pdf文档 keras tutorial

    anything related to the inner working of the layer. Once the custom functionality is done, we can call the base class build function. Our custom build function is as follows: 8. Keras ― Customized Layer  Line 2 creates the weight corresponding to input shape and set it in the kernel. It is our custom functionality of the layer. It creates the weight using ‘normal’ initializer.  Line 6 calls Implement call method call method does the exact working of the layer during training process. Our custom call method is as follows: def call(self, input_data): return K.dot(input_data, self.kernel)
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 63. 迁移学习-自定义数据集实战

    Transfer Learning Step1.Load data ▪ Inherit from torch.utils.data.Dataset ▪ __len__ ▪ __getitem__ Custom Dataset Preprocessing ▪ Image Resize ▪ 224x224 for ResNet18 ▪ Data Argumentation ▪ Rotate ▪ details https://indico.io/blog/exploring-computer-vision-transfer-learning/ In Conclusion ▪ Load custom data ▪ Train from scratch ▪ Transfer learning 下一课时 Thank You.
    0 码力 | 16 页 | 719.15 KB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    如果要加载的模型包含自定义层或其他自定义类或函数,则可以通过 custom_objects 参数将 它们传递给加载机制: from keras.models import load_model # 假设你的模型包含一个 AttentionLayer 类的实例 model = load_model('my_model.h5', custom_objects={'AttentionLayer': AttentionLayer}) model_from_yaml 的工作方式相同: from keras.models import model_from_json model = model_from_json(json_string, custom_objects={'AttentionLayer': AttentionLayer}) 3.3.7 为什么训练误差比测试误差高很多? Keras 模型有两种模式:训练和测试。正则化机制,如 MobileNet 模 型, 你 需 要 导 入 自 定 义 对 象 relu6 和 DepthwiseConv2D 并通过 custom_objects 传参。 下面是示例代码: model = load_model('mobilenet.h5', custom_objects={ 'relu6': mobilenet.relu6, 'DepthwiseConv2D': mobilenet
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    Efficiency would also enable applications that couldn’t have otherwise been feasible with the existing resource constraints. Similarly, having models directly on-device would also support new offline applications
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 《TensorFlow 2项目进阶实战》1-基础理论篇:TensorFlow 2设计思想

    support Experimental support Experimental support Supported planned post 2.0 Supported Custom training loop Experimental support Experimental support Support planned post 2.0 Support
    0 码力 | 40 页 | 9.01 MB | 1 年前
    3
  • pdf文档 QCon北京2018-《未来都市--智慧城市与基于深度学习的机器视觉》-陈宇恒

    GitlabCI) • 容器系统调用栈深,需要仔细验证操作系统,内核及异构设备驱动的兼容性 • Kubernetes对NUMA、异构计算、存储设备的调度能力待加强 1.6 nvidia/gpu custom scheduler 1.8 local-volume 1.10 CPU manager Device plugin 1.9 volume-awared scheduling Go语言在高性能系统中的实践经验
    0 码力 | 23 页 | 9.26 MB | 1 年前
    3
共 16 条
  • 1
  • 2
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterTechniquesAutomationCompressionTensorFlowonYarn深度学习遇上数据kerastutorialPyTorch入门实战63迁移定义定义数据Keras基于PythonIntroduction快速基础理论基础理论设计思想QCon北京2018未来都市智慧城市机器视觉陈宇恒
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩