《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques
Turns out, using learning techniques to improve sample and label efficiency, often helps to make resource efficient models feasible. By feasible, we mean that the model meets the bar for quality metrics be expensive when using very large models. def distillation_loss_fn(y_true_combined, y_pred): """Custom distillation loss function.""" # We will split the y tensor to extract the ground-truth and the model_pred) opt = keras.optimizers.Adam(learning_rate=learning_rate) # Compile the model with the custom loss function and metric. model.compile( loss=distillation_loss_fn, metrics=[categorical_accuracy]0 码力 | 56 页 | 18.93 MB | 1 年前3《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation
available computational budget. They can be increased as more resources become available or reduced in resource constrained situations. The likelihood of finding the optimal increases with the number of trials and resources. Alternatively, we can base the search approach on the budget allocation to cap the resource utilization. Multi-Armed Bandit based algorithms allocate a finite amount of resources to a set contrast to the bracket 0, subsequent brackets start with a smaller set of configurations and higher resource allocation per configuration. This ensures that we try successive halves with various values of0 码力 | 33 页 | 2.48 MB | 1 年前3《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques
choice of the technique depends on several factors like customer preference, consumption delay, or resource availability (extra hands needed for chopping). Personally, I like full apples. Let’s move on from transmission bandwidth is expensive like deep learning models on mobile devices. Mobile devices are resource constrained. Hence, quantization can help to deploy models which would otherwise be too big to shrink the model sizes with an acceptable loss of precision. A smaller model size can be deployed in resource constrained environments like the mobile devices. Quantization has enabled a whole lot of models0 码力 | 33 页 | 1.96 MB | 1 年前3TensorFlow on Yarn:深度学习遇上大数据
TensorFlow on Yarn技术细节揭秘 Yarn支持GPU调度ResourceManager端实现:� 扩展org.apache.hadoop.yarn.api.records.Resource抽象类及其实现,增加:� � public abstract int getGpuCores();� � public abstract void setGpuCores(int gCores);� nodemanager.resource.gpu-cores ((2,2)) � � � NodeManager上可用的GPU卡数是: 2 + 2 = 4� � �� yarn.nodemanager.resource.gpu-cores 0 码力 | 32 页 | 4.06 MB | 1 年前3keras tutorial
anything related to the inner working of the layer. Once the custom functionality is done, we can call the base class build function. Our custom build function is as follows: 8. Keras ― Customized Layer Line 2 creates the weight corresponding to input shape and set it in the kernel. It is our custom functionality of the layer. It creates the weight using ‘normal’ initializer. Line 6 calls Implement call method call method does the exact working of the layer during training process. Our custom call method is as follows: def call(self, input_data): return K.dot(input_data, self.kernel)0 码力 | 98 页 | 1.57 MB | 1 年前3深度学习与PyTorch入门实战 - 63. 迁移学习-自定义数据集实战
Transfer Learning Step1.Load data ▪ Inherit from torch.utils.data.Dataset ▪ __len__ ▪ __getitem__ Custom Dataset Preprocessing ▪ Image Resize ▪ 224x224 for ResNet18 ▪ Data Argumentation ▪ Rotate ▪ details https://indico.io/blog/exploring-computer-vision-transfer-learning/ In Conclusion ▪ Load custom data ▪ Train from scratch ▪ Transfer learning 下一课时 Thank You.0 码力 | 16 页 | 719.15 KB | 1 年前3Keras: 基于 Python 的深度学习库
如果要加载的模型包含自定义层或其他自定义类或函数,则可以通过 custom_objects 参数将 它们传递给加载机制: from keras.models import load_model # 假设你的模型包含一个 AttentionLayer 类的实例 model = load_model('my_model.h5', custom_objects={'AttentionLayer': AttentionLayer}) model_from_yaml 的工作方式相同: from keras.models import model_from_json model = model_from_json(json_string, custom_objects={'AttentionLayer': AttentionLayer}) 3.3.7 为什么训练误差比测试误差高很多? Keras 模型有两种模式:训练和测试。正则化机制,如 MobileNet 模 型, 你 需 要 导 入 自 定 义 对 象 relu6 和 DepthwiseConv2D 并通过 custom_objects 传参。 下面是示例代码: model = load_model('mobilenet.h5', custom_objects={ 'relu6': mobilenet.relu6, 'DepthwiseConv2D': mobilenet0 码力 | 257 页 | 1.19 MB | 1 年前3《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction
Efficiency would also enable applications that couldn’t have otherwise been feasible with the existing resource constraints. Similarly, having models directly on-device would also support new offline applications0 码力 | 21 页 | 3.17 MB | 1 年前3《TensorFlow 2项目进阶实战》1-基础理论篇:TensorFlow 2设计思想
support Experimental support Experimental support Supported planned post 2.0 Supported Custom training loop Experimental support Experimental support Support planned post 2.0 Support0 码力 | 40 页 | 9.01 MB | 1 年前3QCon北京2018-《未来都市--智慧城市与基于深度学习的机器视觉》-陈宇恒
GitlabCI) • 容器系统调用栈深,需要仔细验证操作系统,内核及异构设备驱动的兼容性 • Kubernetes对NUMA、异构计算、存储设备的调度能力待加强 1.6 nvidia/gpu custom scheduler 1.8 local-volume 1.10 CPU manager Device plugin 1.9 volume-awared scheduling Go语言在高性能系统中的实践经验0 码力 | 23 页 | 9.26 MB | 1 年前3
共 16 条
- 1
- 2