积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(29)机器学习(29)

语言

全部英语(17)中文(简体)(12)

格式

全部PDF文档 PDF(29)
 
本次搜索耗时 0.066 秒,为您找到相关结果约 29 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 AI大模型千问 qwen 中文文档

    Qwen Qwen is the large language model and large multimodal model series of the Qwen Team, Alibaba Group. Now the large language models have been upgraded to Qwen1.5. Both language models and multimodal data and post-trained on quality data for aligning to human preferences. Qwen is capable of natural language understanding, text generation, vision understanding, audio understanding, tool use, role play, apply_chat_template() to format your inputs as shown␣ �→below prompt = "Give me a short introduction to large language model." messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user"
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    chapter by presenting self-supervised learning which has been instrumental in the success of natural language models like BERT. Self-Supervised learning helps models to quickly achieve impressive quality with We will describe the general principles of Self-Supervised learning which are applicable to both language and vision. We will also demonstrate its efficacy through a colab. Finally, we introduce miscellaneous this works shortly. For now, let's assume that we have such a general model that works for natural language inputs. Then by definition the model should be able to encode the given text in a sequence of embeddings
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    data is in CSV format with columns: class-id, title and description. The class id is 1-indexed, and the other two fields, title and description, are self-explanatory. Let’s take a look at a few random equivalent). 16 Kaliamoorthi, P., Siddhant, A., Li, E., & Johnson, M. (2021). Distilling Large Language Models into Tiny and Effective Students using pQRNN. arXiv preprint arXiv:2101.08890. 15 Chung Fevry, T., Tsai, H., Johnson, M., & Ruder, S. (2020). Rethinking embedding coupling in pre-trained language models. arXiv preprint arXiv:2010.12821. A common solution for visual domains is to use a model
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 《TensorFlow 快速入门与实战》6-实战TensorFlow验证码识别

    write('1234', 'out.wav’) pydot pydot 是用纯 Python 实现的 GraphViz 接口,支持使用 GraphViz 解析和存储 DOT语言 (graph description language)。其主要依赖 pyparsing 和 GraphViz 这两个工具库。 pyparsing:仅用于加载DOT文件,在 pydot 安装期间自动安装。 GraphViz:将图形
    0 码力 | 51 页 | 2.73 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    词或字符。假设长度为T的文本序列中的词元依次为x1, x2, . . . , xT 。于是,xt(1 ≤ t ≤ T)可以被认为是文 本序列在时间步t处的观测或标签。在给定这样的文本序列时,语言模型(language model)的目标是估计序 列的联合概率 P(x1, x2, . . . , xT ). (8.3.1) 例如,只需要一次抽取一个词元xt ∼ P(xt | xt−1, . . . , 们看一下如何使用循环神经网络来构建语言模型。设小批量大小为1,批量中的文本序列为“machine”。为 了简化后续部分的训练,我们考虑使用 字符级语言模型(character‐level language model),将文本词元化 为字符而不是单词。图8.4.2演示了如何通过基于字符级语言建模的循环神经网络,使用当前的和先前的字符 预测下一个字符。 图8.4.2: 基于循环神经网络的字 的文本序列对,序列对由英文文本序列和翻译后的法语文本序列组成。请注意,每个文本序列可以是一个句 子,也可以是包含多个句子的一个段落。在这个将英语翻译成法语的机器翻译问题中,英语是源语言(source language),法语是目标语言(target language)。 #@save d2l.DATA_HUB['fra-eng'] = (d2l.DATA_URL + 'fra-eng.zip', '94646ad1522d9
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    paper. This model script is available on GitHub. ‣ TransformerXL model: This transformer-based language model has a segment-level recurrence and a novel relative positional encoding. The enhancements Transformers (BERT) is a new method of pretraining language representations which obtains state-of-the-art results on a wide array of Natural Language Processing (NLP) tasks. This model is based on the the BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding paper. The NVIDIA BERT implementation is an optimized version of the Hugging Face implementation paper that leverages
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 keras tutorial

    concatenate two inputs. It is defined below: keras.layers.concatenate(inputs, axis=-1) Functional interface to the Concatenate layer. Here, axis refers to Concatenation axis. dot It returns the dot etc., and the order will be strictly maintained. Sequence Analysis is used frequently in natural language processing to find the sentiment analysis of the given text. Let us create a LSTM model to analyze
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    Model quality is an important benchmark to evaluate the performance of a deep learning model. A language translation application that uses a low quality model would struggle with consumer adoption because sets up the modules, functions and variables that will be used later on. It initializes the Natural Language Toolkit (NLTK) and creates a text sequence from a sentence. from random import choice, randint of sentiment analysis, the transformation must preserve the original sentiment of the text. For a language translation model, the label sequence and the mutated input must have the same meaning. It is fair
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    Learning models have beaten previous baselines significantly in many tasks in computer vision, natural language understanding, speech, and so on. Their rise can be attributed to a combination of things: Faster effect in the world of Natural Language Processing (NLP) (see Figure 1-2), where the Transformer architecture significantly beat previous benchmarks such as the General Language Understanding Evaluation (GLUE) Tom B., et al. "Language models are few-shot learners." arXiv preprint arXiv:2005.14165 (2020). 4 Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 亚马逊AWSAI Services Overview

    Departure Date Flight Booking “Book a flight to London” Automatic Speech Recognition Natural Language Understanding Book Flight London Utterances Flight booking London Heathrow Intent / Slot Departure Date Flight Booking “Book a flight to London” Automatic Speech Recognition Natural Language Understanding Book Flight London Utterances Flight booking London Heathrow Intent / Slot Departure Date Flight Booking “Book a flight to London” Automatic Speech Recognition Natural Language Understanding Book Flight London Utterances Flight booking London Heathrow Intent / Slot
    0 码力 | 56 页 | 4.97 MB | 1 年前
    3
共 29 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
AI模型千问qwen中文文档EfficientDeepLearningBookEDLChapterAdvancedTechniquesTechnicalReviewArchitecturesTensorFlow快速入门实战验证验证码识别动手深度学习v2PyTorchReleaseNoteskerastutorialIntroduction亚马亚马逊AWSAIServicesOverview
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩