《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures
about a dog and cat, but we know that they are both cute, have been domesticated for a while and are safe. These two animals are more similar to each other than to a random animal like a chimp. Similarly bear, if we ever accidentally cross paths. We build an associative memory when about them over our lifetime. This associative memory helps us visualize the similarities or differences between a pair of extremely dangerous, even though stuffed teddy bears have conditioned us into thinking that they might be safe and cute. A raccoon can seem to be cute (remember Rocket the raccoon from Guardians of the Galaxy0 码力 | 53 页 | 3.92 MB | 1 年前3AI大模型千问 qwen 中文文档
quantize_config) 但是,如果你想使用多 GPU 来读取模型,你需要使用 max_memory 而不是 device_map。下面是一段示例 代码: model = AutoGPTQForCausalLM.from_pretrained( model_path, quantize_config, max_memory={i:"20GB" for i in range(4)} ) 接下来,你需要准 osition_embedding)为 32768,因此服务时的最 大长度也是这个值,这会导致更高的内存需求。将此值适当减小通常有助于解决 OOM 问题。另一个您可以 关注的参数是 --gpu-memory-utilization 。默认情况下,该值为 0.9 ,您可以将其调高以应对 OOM 问题。这也是为什么您发现一个大型语言模型服务总是占用大量内存的原因。 1.11 SkyPilot 1.11 NotImplementedError to_return = {k: maybe_zero_3(v) for k, v in to_return.items()} return to_return def safe_save_model_for_hf_trainer( trainer: transformers.Trainer, output_dir: str, bias="none" ): """Collects0 码力 | 56 页 | 835.78 KB | 1 年前3《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction
Training Efficiency involves benchmarking the model training process in terms of computation cost, memory cost, amount of training data, and the training latency. It addresses questions like: ● How long the model take to train? ● How many devices are needed for the training? ● Can the model fit in memory? ● How much data would the model need to achieve the desired performance on the given task that regulations for those who collect data of European citizens, such that they are responsible for the safe-keeping of the data and are held legally liable for data breaches. The law went into effect in 20180 码力 | 21 页 | 3.17 MB | 1 年前3PyTorch Release Notes
multi-threaded data loaders, the default shared memory segment size with which the container runs might not be enough. Therefore, you should increase the shared memory size by issuing one of the following commands: commands: ‣ --ipc=host ‣ --shm-size=memory size> in the command line to docker run --gpus all To pull data and model descriptions from locations outside the container for use by PyTorch or (FP8) precision on Hopper GPUs which provides better training and inference performance with lower memory utilization. Transformer Engine also includes a collection of highly optimized modules for popular 0 码力 | 365 页 | 2.94 MB | 1 年前3【PyTorch深度学习-龙龙老师】-测试版202112
除了具有空间结构的图片、视频等数据外,序列信号也是非常常见的一种数据类型, 其中一个最具代表性的序列信号就是文本数据。如何处理并理解文本数据是自然语言处理 的一个核心问题。卷积神经网络由于缺乏 Memory 机制和处理不定长序列信号的能力,并 不擅长序列信号的任务。循环神经网络(Recurrent Neural Network,简称 RNN)在 Yoshua Bengio、Jürgen Schmidhuber cuda.memory_allocated 函 数获取目前已分配显存大小,代码如下: # 获取 GPU 0 的总显存 t = torch.cuda.get_device_properties(0).total_memory # 获取保留显存 r = torch.cuda.memory_reserved(0) # 获取已分配显存 a = torch.cuda.memory_allocated(0) 有效的全局语义信息。 11.2.3 全局语义 如何赋予网络提取整体语义特征的能力呢?或者说,如何让网络能够按序提取词向量 的语义信息,并累积成整个句子的全局语义信息呢?我们想到了内存(Memory)机制。如果 网络能够提供一个单独的内存变量,每次提取词向量的特征并刷新内存变量,直至最后一 个输入完成,此时的内存变量即存储了所有序列的语义特征,并且由于输入序列之间的先 后顺序,使得内存变量内容与序列顺序紧密关联。0 码力 | 439 页 | 29.91 MB | 1 年前3深度学习与PyTorch入门实战 - 09. 维度变换
example 8 squeeze 9 Expand / repeat ▪ Expand: broadcasting ▪ Repeat: memory copied 10 Expand/expand_as 11 repeat Memory touched 12 .t 13 Transpose 14 permute 15 Thank You.0 码力 | 16 页 | 1.66 MB | 1 年前3星际争霸与人工智能
Overcoming catastrophic forgetting in neural networks Memory-Augmented Neural Networks Source: Hybrid computing using a neural network with dynamic external memory Work Fun Play Hard0 码力 | 24 页 | 2.54 MB | 1 年前3人工智能发展史
cs.toronto.edu/~fritz/absps/cvq.pdf probability distributions Meanwhile: Speech Sequence ▪ No Memory ▪ Time delay NN http://www.cs.toronto.edu/~fritz/absps/waibelTDNN.pdf Moving window ▪ Inspired kprop_old.pdf https://www.cs.toronto.edu/~hinton/absps/NatureDeepReview.pdf LSTM: 1997 ▪ Long memory https://github.com/dzitkowskik/StockPredictionRNN/blob/master/docs/Hochreiter97_lst m.pdf http://www0 码力 | 54 页 | 3.87 MB | 1 年前3TensorFlow on Yarn:深度学习遇上大数据
#work数量 � --worker-memory 8192M \ #每个worker需要的内存� --worker-cores 1 \ #每个worker需要的CPU核数� --worker-gpus 2 \ #每个worker需要的GPU卡数� --ps-num 2 \ #ps数量� --ps-memory 1024M \ #每个ps需要的内存�0 码力 | 32 页 | 4.06 MB | 1 年前3亚马逊AWSAI Services Overview
内存 (内存存取带宽达到240 GB/秒), 以及 2,496 个并行处理核心 Instance Name GPU Count vCPU Count Memory Parallel Processing Cores GPU Memory Network Performance p2.xlarge 1 4 61 GiB 2,496 12 GiB High p2.8xlarge 8 320 码力 | 56 页 | 4.97 MB | 1 年前3
共 23 条
- 1
- 2
- 3