积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(5)机器学习(5)

语言

全部英语(4)中文(简体)(1)

格式

全部PDF文档 PDF(5)
 
本次搜索耗时 0.046 秒,为您找到相关结果约 5 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 keras tutorial

    model = Sequential() model.add(Dense(512, activation='elu', input_shape=(784,))) selu Applies Scaled exponential linear unit. from keras.models import Sequential from keras.layers import Activation data can be changed using below code: x_train_scaled = preprocessing.scale(x_train) scaler = preprocessing.StandardScaler().fit(x_train) x_test_scaled = scaler.transform(x_test) Here, we have normalized Step 6: Train the model Let us train the model using fit() method. history = model.fit(x_train_scaled, y_train, batch_size=128, epochs=500,
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    the presence of sufficient labeled data. With deep learning models, the performance of the model scaled well with the number of labeled examples, since the network had a large number of parameters. Thus
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    to the child, we would need to update the controller as well. Second, the controller needs to be scaled with the child networks. For a large child network, a large controller is required which would invariably
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    compute the query, key and value matrices for input sequences. Then, a softmax is applied to the scaled dot product of query and key matrices to obtain a score matrix (figure 4-16). Finally, the values
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    的所有元素都是独立的随机变量,并且都满足零均值和单位方差,那么两个向量的点积的均值为0,方差为d。 为确保无论向量长度如何,点积的方差在不考虑向量长度的情况下仍然是1,我们再将点积除以 √ d,则缩放 点积注意力(scaled dot‐product attention)评分函数为: a(q, k) = q⊤k/ √ d. (10.3.4) 在实践中,我们通常从小批量的角度来考虑提高效率,例如基于n个查询和m个键-值对计算注意力,其中查
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
共 5 条
  • 1
前往
页
相关搜索词
kerastutorialEfficientDeepLearningBookEDLChapterIntroductionAutomationArchitectures动手深度学习v2
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩