积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(28)机器学习(28)

语言

全部中文(简体)(26)英语(2)

格式

全部PDF文档 PDF(28)
 
本次搜索耗时 0.063 秒,为您找到相关结果约 28 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 AutoEncoder自编码器

    0 码力 | 29 页 | 3.49 MB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    8.5 循环神经网络的从零开始实现 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317 8.5.1 独热编码 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317 8.5.2 初始化模型参数 . . . . . . . . . . . . . . . . . . . 362 9.6 编码器‐解码器架构 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364 9.6.1 编码器 . . . . . . . . . . . . . . . . . . . . . . . . 6.3 合并编码器和解码器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365 9.7 序列到序列学习(seq2seq) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366 9.7.1 编码器 . . .
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    np.random.random((1000, 100)) labels = np.random.randint(10, size=(1000, 1)) # 将标签转换为分类的 one-hot 编码 one_hot_labels = keras.utils.to_categorical(labels, num_classes=10) # 训练模型,以 32 个样本为一个 batch 进行迭代 进 行监督学习。较早地在模型中使用主损失函数,是深度学习模型的一个良好正则方法。 模型结构如下图所示: 让我们用函数式 API 来实现它。 主要输入接收新闻标题本身,即一个整数序列(每个整数编码一个词)。这些整数在 1 到 10,000 之间(10,000 个词的词汇表),且序列长度为 100 个词。 from keras.layers import Input, Embedding, `name` 参数来命名任何层。 main_input = Input(shape=(100,), dtype='int32', name='main_input') # Embedding 层将输入序列编码为一个稠密向量的序列,每个向量维度为 512。 x = Embedding(output_dim=512, input_dim=10000, input_length=100)(main_input)
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-13深度学习-Transformer

    Transformer介绍 Encoder-Decoder模型 通常来说,Seq2Seq任务最常见的是使用Encoder+Decoder的模式,先将一个序 列编码成一个上下文矩阵,在使用Decoder来解码。当然,我们仅仅把context vector作为编码器到解码器的输入。 7 1.Transformer介绍 Attention注意力机制 在介绍什么是注意力机制之前, 先让大家看一张图片。当大家看 那么拆开这个黑箱,我们可以看到它是由编码组件、解码组件和它们之间的 连接组成。 16 2.Transformer的工作流程 编码组件部分由一堆编 码器(encoder)构成 (论文中是将6个编码 器叠在一起)。解码组 件部分也是由相同数量 (与编码器对应)的解 码器(decoder)组成 的。 17 2.Transformer的工作流程 所有的编码器在结构上都是相同 的,但它们没有共享参数。每个 Transformer的工作流程 从编码器输入的句子首先会经过一个自注意力(self-attention)层,这层帮助编码器在对每 个单词编码时关注输入句子的其他单词。 自注意力层的输出会传递到前馈(feed-forward)神经网络中。每个位置的单词对应的前馈 神经网络都完全一样(译注:另一种解读就是一层窗口为一个单词的一维卷积神经网络)。 解码器中也有编码器的自注意力(self-atten
    0 码力 | 60 页 | 3.51 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    11.11 LSTM/GRU 情感分类问题再战 11.12 预训练的词向量 11.13 参考文献 第 12 章 自编码器 12.1 自编码器原理 12.2 MNIST 图片重建实战 12.3 自编码器变种 12.4 变分自编码器 12.5 VAE 实战 12.6 参考文献 第 13 章 生成对抗网络 13.1 博弈学习实例 13.2 GAN 监督信号,即模型需要学习的映射为??: ? → ?,称为自监督学习(Self-supervised Learning)。在训练时,通过计算模型的预测值??(?)与自身?之间的误差来优化网络参数?。 常见的无监督学习算法有自编码器、生成对抗网络等。 强化学习 也称为增强学习,通过与环境进行交互来学习解决问题的策略的一类算法。 与有监督学习、无监督学习不同,强化学习问题并没有明确的“正确的”动作监督信号, 预览版202112 Rumelhart 和 Geoffrey Hinton 等人将 BP 算法应用 在多层感知机上;1989 年 Yann LeCun 等人将 BP 算法应用在手写数字图片识别上,取得 了巨大成功,这套系统成功商用在邮政编码识别、银行支票识别等系统上;1997 年,现在 应用最为广泛的循环神经网络变种之一 LSTM 被 Jürgen Schmidhuber 提出;同年双向循环 神经网络也被提出。 遗憾的是,神经网络的研究随着以支持向量机(Support
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 《TensorFlow 快速入门与实战》6-实战TensorFlow验证码识别

    图像处理:RGB图 -> 灰度图 -> 规范化数据 输入数据处理 适配 Keras 图像数据格式:“channels_frist” 或 “channels_last” 输出数据处理 One-hot 编码:验证码转向量 输出数据处理 解码:模型输出向量转验证码 argmax “Hello TensorFlow” Try it 模型结构设计 分类问题 图像分类模型 AlexNet Krizhevsky 验证码识别服务 使用 Flask 启动 验证码识别服务 $ export FLASK_ENV=development && flask run --host=0.0.0.0 打开浏览器访问测试 URL(http://localhost:5000/ping) 访问 验证码识别服务 $ curl -X POST -F image=@2140.png 'http://localhost:5000/predict'
    0 码力 | 51 页 | 2.73 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01机器学习-引言

    何恺明,本科就读于清华大学,博士毕业于 香港中文大学多媒体实验室。2016年,加入 Facebook AI Research(FAIR)担任研究科 学家。 主要贡献:设计了ResNets 8 国内外知名人工智能企业榜单 编码 企业名称 人工智能技术 应用领域 所属国家 成立时间 资本市场状态 市值/估值/融资额 1 Microsoft(微软) 计算机视觉技术、自然语言处理技术 等 办公 美国 1975年 上市 市值1 pd.read_excel() | 从 Excel 文 件 读 取 pd.read_sql() | 从 SQL 表 或 数 据 库 读 取 pd.read_json() | 从JSON格式的URL或文件读取 pd.read_clipboard() | 从剪切板读取 将DataFrame写入⽂件 df.to_csv() | 写入CSV文件 df.to_excel() | 写入Excel文件
    0 码力 | 78 页 | 3.69 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-01深度学习-引言

    何恺明,本科就读于清华大学,博士毕业于 香港中文大学多媒体实验室。2016年,加入 Facebook AI Research(FAIR)担任研究科 学家。 主要贡献:设计了ResNets 8 国内外知名人工智能企业榜单 编码 企业名称 人工智能技术 应用领域 所属国家 成立时间 资本市场状态 市值/估值/融资额 1 Microsoft(微软) 计算机视觉技术、自然语言处理技术 等 办公 美国 1975年 上市 市值1 pd.read_excel() | 从 Excel 文 件 读 取 pd.read_sql() | 从 SQL 表 或 数 据 库 读 取 pd.read_json() | 从JSON格式的URL或文件读取 pd.read_clipboard() | 从剪切板读取 将DataFrame写入⽂件 df.to_csv() | 写入CSV文件 df.to_excel() | 写入Excel文件
    0 码力 | 80 页 | 5.38 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-15深度学习-GAN

    生成式深度学习简介 02 GAN的理论与实现模型 04 GAN的思考与前景 1.生成式深度学习简介 4  深度学习中常见生成式模型  自编码(AE)  其隐变量z是一个单值映射:z=f(x)  变分自编码(VAE)  其隐变量z是一个正态分布的采样  生成式对抗网络(GAN)  条件生成式对抗网络(CGAN)  在生成器和判别器中添加某一标签信息  为了使整个网络可微,拿掉了CNN 中的池化层  将全连接层以全局池化层替代以减轻计算量。 1.生成式深度学习简介 5 自编码(AE)结构图 1.生成式深度学习简介 6 变分自编码(VAE)结构图 1.生成式深度学习简介 7 变分自编码(VAE)生成图像 1.生成式深度学习简介 8 03 GAN 的应用 01 生成式深度学习简介 02 GAN的理论与实现模型 GAN的理论与实现模型 (5) EBGAN--基于能量的生成式对抗网络,从能量模型角度给出了解释。 图 EBGAN的结构 2. GAN的理论与实现模型 生成模型 z ~x X 自然输入 编码 判别模型 解码 均方误差 能量 生成输入 随机噪声 23 GAN的衍生模型 GAN的理论与实现模型 (6) Improved GAN--改进生成式对抗网络,提出了使模型训练稳定的五条
    0 码力 | 35 页 | 1.55 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-14深度学习-Vision Transformer (ViT)

    模型介绍 12 提取特征 2.模型介绍 13 1.将位置编码信息加入提取的特征 2.模型介绍 14 位置编码信息对准确率的影响 2.模型介绍 结论:编码有用,但是怎么编码影响不大,干脆用简单的得了 2D(分别计算行和列的编码,然后求和)的效果还不如1D的每一层都加共享的 位置编码也没啥太大用 15 位置编码 2.模型介绍 16 将 3) 的 结 果 喂 入 标 准
    0 码力 | 34 页 | 2.78 MB | 1 年前
    3
共 28 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
深度学习PyTorch入门实战54AutoEncoder编码码器编码器动手v2Keras基于Python机器课程温州大学13Transformer深度学习TensorFlow快速验证验证码识别01引言15GAN14VisionViT
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩