积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(13)机器学习(13)

语言

全部英语(7)中文(简体)(6)

格式

全部PDF文档 PDF(13)
 
本次搜索耗时 0.026 秒,为您找到相关结果约 13 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 keras tutorial

    quite easy. Follow below steps to properly install Keras on your system. Step 1: Create virtual environment Virtualenv is used to manage Python packages for different projects. This will be helpful use a virtual environment while developing Python applications. Linux/Mac OS Linux or mac OS users, go to your project root directory and type the below command to create virtual environment, python3 keras Step 2: Activate the environment This step will configure python and pip executables in your shell path. Linux/Mac OS Now we have created a virtual environment named “kerasvenv”. Move to the
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    Before you begin Before you can run an NGC deep learning framework container, your Docker ® environment must support NVIDIA GPUs. To run a container, issue the appropriate command as explained in Running Docker container (defaults to all GPUs, but can be specified by using the NVIDIA_VISIBLE_DEVICES environment variable). For more information, refer to the nvidia-docker documentation. Note: Starting in software that you installed to prepare to run NGC containers on TITAN PCs, Quadro PCs, or NVIDIA Virtual GPUs (vGPUs). Procedure 1. Issue the command for the applicable release of the container that
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 《TensorFlow 快速入门与实战》2-TensorFlow初接触

    Jupyter Notebook ��� TensorFlow “Hello TensorFlow” Try it ������ TensorFlow VM vs Docker Container Virtual Machine Docker Container � Docker ��� TensorFlow https://hub.docker.com/editions/community/docker-ce-desktop-mac
    0 码力 | 20 页 | 15.87 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-15深度学习-GAN

    历史平均(historical averaging) d.单边标签平滑(one-sided label smoothing) e.虚拟批量正则(virtual batch normalization) 2. GAN的理论与实现模型 24 03 GAN 的应用 01 生成式深度学习简介 02 GAN的理论与实现模型 04
    0 码力 | 35 页 | 1.55 MB | 1 年前
    3
  • pdf文档 rwcpu8 Instruction Install miniconda pytorch

    use PyTorch, activate the pytorch conda environment: 3. There is also a conda environment for TensorFlow 2: 4. After you activate the corresponding environment, you should be able to run Python scripts to the default environment (i.e., the base environment) or a new environment. If you want to install PyTorch to the default environment, skip Steps 1. 1. Create a new conda environment. pytorch is of the environment to be created. You may specify a different name. 2. Activate the environment that you want to install PyTorch to. Replace pytorch with base if you use the default environment. You
    0 码力 | 3 页 | 75.54 KB | 1 年前
    3
  • pdf文档 PyTorch Brand Guidelines

    has a special color palette to best serve these needs. When applying color in the digital environment; web, app, and social media posts, please reference the digital RGB or hex code equivalent has a special color palette to best serve these needs. When applying color in the digital environment; web, app, and social media posts, please reference the digital RGB or hex code equivalent C00, M00, Y00, K91 Pantone Black 6C Supporting Colors For the PyTorch website and digital environment, and coding purposes, we use Supporting Colors. Hosting code-related messages such as sample
    0 码力 | 12 页 | 34.16 MB | 1 年前
    3
  • pdf文档 Lecture 1: Overview

    unlabeled example in the environment Learner can construct an arbitrary example and query an oracle for its label Learner can design and run experiments directly in the environment without any human guidance (SDU) Overview September 6, 2023 33 / 57 Reinforcement Learning Learning from interaction (with environment) Goal-directed learning Learning what to do and its effect Trial-and-error search and delayed
    0 码力 | 57 页 | 2.41 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    approximately the same . Such a model is useful if we want to deploy a model in a space constrained environment like a mobile device. To summarize, compression techniques help to achieve an efficient representation the repository in the form of Jupyter notebooks. You can run the notebooks in Google’s Colab environment which provides free access to CPU, GPU, and TPU resources. You can also run this locally on your
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 星际争霸与人工智能

    Classic AI Modern AI 2016~Now 2010~Now AIIDE IEEE CIG SSCAIT Reinforcement Learning Agent Environment Action Observation Reward Goal Deep Reinforcement Learning What is next? • All above are
    0 码力 | 24 页 | 2.54 MB | 1 年前
    3
  • pdf文档 亚马逊AWSAI Services Overview

    prob = 73% within 1 sec Deep RL | Playing Flappy Birds • Reinforcement learning: Observe environment  Take Action  Achieve Reward  Repeat. Goal is to maximize rewards over time. • There are
    0 码力 | 56 页 | 4.97 MB | 1 年前
    3
共 13 条
  • 1
  • 2
前往
页
相关搜索词
kerastutorialPyTorchReleaseNotesTensorFlow快速入门实战接触机器学习课程温州大学15深度GANrwcpu8InstructionInstallminicondapytorchBrandGuidelinesLectureOverviewEfficientDeepLearningBookEDLChapterCompressionTechniques星际争霸星际争霸人工智能人工智能亚马亚马逊AWSAIServices
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩