keras tutorial
and install it immediately on your system. Keras Installation Steps Keras installation is quite easy. Follow below steps to properly install Keras on your system. Step 1: Create virtual environment Matplotlib Scipy Seaborn Hopefully, you have installed all the above libraries on your system. If these libraries are not installed, then use the below command to install one by one. numpy layer and output layer) in the actual proposed neural network model. Keras provides a lot of pre-build layers so that any complex neural network can be easily created. Some of the important Keras layers0 码力 | 98 页 | 1.57 MB | 1 年前3AI大模型千问 qwen 中文文档
�→below prompt = "Give me a short introduction to large language model." messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer "Content-Type: application/json" - �→d '{ "model": "Qwen/Qwen1.5-7B-Chat", "messages": [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Tell me something about chat_response = client.chat.completions.create( model="Qwen/Qwen1.5-7B-Chat", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Tell me something about0 码力 | 56 页 | 835.78 KB | 1 年前3PyTorch Release Notes
Python libraries such as NumPy, SciPy, and Cython. Automatic differentiation is done with a tape-based system at both a functional and neural network layer level. This functionality brings a high level of flexibility explained in Running A Container and specify the registry, repository, and tags. About this task On a system with GPU support for NGC containers, when you run a container, the following occurs: ‣ The Docker documentation. Note: Starting in Docker 19.03, complete the steps below. The method implemented in your system depends on the DGX OS version that you installed (for DGX systems), the NGC Cloud Image that was0 码力 | 365 页 | 2.94 MB | 1 年前3《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation
reliance on statistical distributions to estimate the objective function which introduces noise in the system. Figure 7-3 (a) shows BOS for a two dimensional search space. It indicates that the search adaptively the global LEARNING_RATE and DROPOUT_RATE parameters from chapter 3. We have an additional function build_hp_model() here which takes a hp parameter that refers to a keras_tuner. HyperParameters() object type hyperparameters: learning_rate in range [.0001, .01] and dropout_rate in range [.1, .8]. The build_hp_model() is called by the tuner to create a model for each trial with the chosen values for the0 码力 | 33 页 | 2.48 MB | 1 年前3《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction
tolerate approximate responses, since often there are no exact answers. Machine learning algorithms help build models, which as the name suggests is an approximate mathematical model of what outputs correspond the other? This is illustrated in Figure 1-6. As mentioned earlier, with this book we’ll strive to build a set of tools and techniques that can help us make models pareto-optimal and let the user pick the Chapter 4. Infrastructure Finally, we also need a foundation of infrastructure and tools that help us build and leverage efficient models. This includes the model training framework, such as Tensorflow, PyTorch0 码力 | 21 页 | 3.17 MB | 1 年前3《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures
distance from a snake, and definitely from a grizzly bear, if we ever accidentally cross paths. We build an associative memory when about them over our lifetime. This associative memory helps us visualize and in disturbed areas as both a perennial and annual." 6,"Europa Jupiter System Mission – Laplace"," The Europa Jupiter System Mission – Laplace (EJSM/Laplace) was a proposed joint NASA/ESA unmanned space dataset to use as a source for building the vocabulary. # This step allows the vectorization layer to build the vocabulary. train_text_ds = tf.data.Dataset.from_tensor_slices(x_train).batch(512) vectorization_layer0 码力 | 53 页 | 3.92 MB | 1 年前3《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques
tradeoff on how much compression we want v/s how much quality loss can we tolerate? Let us slowly build up to that by exploring how quantization can help us. A Generic View of Quantization Quantization solve the problem of recognizing digits on checks or cheques using a deep learning system. We are targeting this system to run on a low end Android device. The resource limitations are under 50 Kb of model0 码力 | 33 页 | 1.96 MB | 1 年前3动手学深度学习 v2.0
Jean Kaddour, austinmw, trebeljahr, tbaums, Cuong V. Nguyen, pavelkomarov, vzlamal, NotAnother‐ System, J‐Arun‐Mani, jancio, eldarkurtic, the‐great‐shazbot, doctorcolossus, gducharme, cclauss, Daniel‐ 查询条件的结果进行排序。如今,搜索引擎使用机器学习和用户行为模型来获取网页相关性得分,很多学术 会议也致力于这一主题。 推荐系统 另一类与搜索和排名相关的问题是推荐系统(recommender system),它的目标是向特定用户进行“个性化” 推荐。例如,对于电影推荐,科幻迷和喜剧爱好者的推荐结果页面可能会有很大不同。类似的应用也会出现 在零售产品、音乐和新闻推荐等等。 在某些应用中,客户 ,生成的 “”词元说明完成了序列输出工作。此外,我们还记录了每个文本序列的长度,统计长度时排除了填充 词元,在稍后将要介绍的一些模型会需要这个长度信息。 #@save def build_array_nmt(lines, vocab, num_steps): """将机器翻译的文本序列转换成小批量""" lines = [vocab[l] for l in lines] lines 0 码力 | 797 页 | 29.45 MB | 1 年前3Keras: 基于 Python 的深度学习库
h5py 快速开始 38 如 果 模 块 导 入 没 有 错 误, 那 么 模 块 已 经 安 装 成 功, 否 则 你 可 以 在 http://docs.h5py.org/en/latest/build.html 中找到详细的安装说明。 模型 39 4 模型 4.1 关于 Keras 模型 在 Keras 中有两类主要的模型:Sequential 顺序模型 和 使用函数式 API 的 Model self.units = units self.state_size = units super(MinimalRNNCell, self).__init__(**kwargs) def build(self, input_shape): self.kernel = self.add_weight(shape=(input_shape[-1], self.units), initializer='uniform' Keras2.0 中,Keras 层的骨架(如果你用的是旧的版本,请你更新)。你只需要实 现三个方法即可: • build(input_shape): 这是你定义权重的地方。这个方法必须设 self.built = True,可 以通过调用 super([Layer], self).build() 完成。 • call(x): 这里是编写层的功能逻辑的地方。你只需要关注传入 call 的第一个参数:输入0 码力 | 257 页 | 1.19 MB | 1 年前3【PyTorch深度学习-龙龙老师】-测试版202112
label) # 打印这条句子的标签 # 构建词汇表,并分词编码,仅考虑 10000 个单词,耗时约 5 分钟 TEXT.build_vocab(train_data, max_size=10000, vectors='glove.6B.100d') LABEL.build_vocab(train_data) # 打印单词数量:10000++ print(f'Unique add(layers.ReLU())# 添加激活函数层 network.build(input_shape=(4, 4)) # 创建网络参数 network.summary() 上述代码通过指定任意的 layers_num 参数即可创建对应层数的网络结构,在完成网络创建 时,网络层类并没有创建内部权值张量等成员变量,此时通过调用类的 build 方法并指定 输入大小,即可自动创建所有层的内部张量。通过 layers.Dense(32, activation='relu'), layers.Dense(10)]) network.build(input_shape=(4, 28*28)) network.summary() 创建网络后,正常的流程是循环迭代数据集多个 Epoch,每次按批产生训练数据、前向计 算,然后通过损失 0 码力 | 439 页 | 29.91 MB | 1 年前3
共 29 条
- 1
- 2
- 3