积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(21)机器学习(21)

语言

全部英语(11)中文(简体)(10)

格式

全部PDF文档 PDF(21)
 
本次搜索耗时 0.030 秒,为您找到相关结果约 21 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Keras: 基于 Python 的深度学习库

    Boston 房价回归数据集 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 13 预训练模型 Applications 158 13.1 可用的模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 它们可以使用 keras.applications 模块进行导入: from keras.applications.xception import Xception from keras.applications.vgg16 import VGG16 from keras.applications.vgg19 import VGG19 from keras.applications.resnet50 resnet50 import ResNet50 from keras.applications.inception_v3 import InceptionV3 from keras.applications.inception_resnet_v2 import InceptionResNetV2 from keras.applications.mobilenet import MobileNet model
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 keras tutorial

    learning, Keras models, Keras layers, Keras modules and finally conclude with some real-time applications. Audience This tutorial is prepared for professionals who are aspiring to make a career ............................................................................ 83 15. Keras ― Applications ............................................................................................. designed to quickly define deep learning models. Well, Keras is an optimal choice for deep learning applications. Features Keras leverages various optimization techniques to make high level neural network
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    to expect in the book. We start off by providing an overview of the state of deep learning, its applications, and rapid growth. We will establish our motivation behind seeking efficiency in deep learning deep learning models. Introduction to Deep Learning Machine learning is being used in countless applications today. It is a natural fit in domains where there might not be a single algorithm that works perfectly Unlike traditional algorithm problems where we expect exact optimal answers, machine learning applications can often tolerate approximate responses, since often there are no exact answers. Machine learning
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    models posed deployment challenges. What good is a model that cannot be deployed in practical applications! Efficient Architectures aim to improve model deployability by proposing novel ways to reduce epochs. However, we should discuss a couple of follow-up topics around how to scale them to NLP applications and beyond. My embedding table is huge! Help me! While embedding tables help in dimensionality model architectures such as the Transformer, which is now showing great promise in computer vision applications as well! Learn Long-Term Dependencies Using Attention Imagine yourself in your favorite buffet
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 深度学习下的图像视频处理技术-沈小勇

    → near recent Many Applications HD video generation from low-res sources Motivation 35 Old and Fundamental Several decades ago [Huang et al, 1984] → near recent Many Applications HD video generation Motivation 36 Old and Fundamental Several decades ago [Huang et al, 1984] → near recent Many Applications HD video generation from low-res sources Video enhancement with details Text/object recognition
    0 码力 | 121 页 | 37.75 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    downstream application (which is very reasonable), we only need to achieve that saving across 100 applications before it becomes profitable to pre-train BERT-Base rather than train each application from scratch GPT-3 API10 to build their own applications. Given the large number of possible uses for such models, the high costs of pre-training get spread over the number of applications using it. Project: Using Pre-trained
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 Lecture 1: Overview

    the environment without any human guidance. Feng Li (SDU) Overview September 6, 2023 15 / 57 Applications of Machine Learning Document Search Given counts of words in a document, determine what its contains Determine what actions it contains. Feng Li (SDU) Overview September 6, 2023 16 / 57 Applications of Machine Learning (Contd.) Cancer Diagnosis Given data on expression levels of genes, classify
    0 码力 | 57 页 | 2.41 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    keras_tuner as kt import numpy as np from matplotlib import pyplot as plt from tensorflow.keras import applications as apps from tensorflow.keras import layers, optimizers train_ds, val_ds, test_ds = tfds.load( based NAS models used the validation accuracy as a primary reward signal which is perfect for the applications that have sufficient compute resources at their disposal. However, on mobile and edge devices
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    We’ll start with a gentle introduction to the idea of compression. Details of quantization and its applications in deep learning follow right after. The quantization section delves into the implementation details introduce a for-loop either within the function, or outside it. This is crucial for deep learning applications which frequently operate on batches of data. Using vectorized operations also speeds up the execution
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    loss function (discussed in chapter 2) and the adam optimizer. from tensorflow.keras import applications as apps from tensorflow.keras import layers, optimizers, metrics DROPOUT_RATE = 0.2 LEARNING_RATE create_model() model.summary() Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/resnet/resnet50_weights_tf_dim _ordering_tf_kernels_notop.h5 94773248/94765736 [===========
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
共 21 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
Keras基于Python深度学习kerastutorialEfficientDeepLearningBookEDLChapterIntroductionArchitectures图像视频处理技术沈小勇AdvancedTechniquesTechnicalReviewLectureOverviewAutomationCompression
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩