积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(13)机器学习(13)

语言

全部英语(10)中文(简体)(3)

格式

全部PDF文档 PDF(13)
 
本次搜索耗时 0.029 秒,为您找到相关结果约 13 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    used for auto-completing code snippets with an IDE. End-users can also use GPT-3 API10 to build their own applications. Given the large number of possible uses for such models, the high costs of pre-training classification problem, a 0.2% jump is significant. Label smoothing is easy to implement on your own. However, various frameworks support it through their cross entropy loss function implementation. For controls the # size of the neighborhood that you look into. ) We hope that you can try out SAM on your own models, which may differ from the typical benchmark datasets and models used for comparing such techniques
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 Lecture 7: K-Means

    46 Hierarchical Clustering Agglomerative (bottom-up) Clustering 1 Start with each example in its own singleton cluster 2 At each time-step, greedily merge 2 most similar clusters 3 Stop when there is time-step, remove the “outsiders” from the least cohesive cluster 3 Stop when each example is in its own singleton cluster, else go to 2 Feng Li (SDU) K-Means December 28, 2021 31 / 46 Hierarchical Clustering the other i′ ∈ G dG i = 1 nG � i′∈G di,i′ Remove the most dissimilar data i∗ and put it in its own cluster H i∗ = arg max i∈G dG i , G = G \ {i∗}, H = {i∗} Repeat picking a point i∗ to move that maximizes
    0 码力 | 46 页 | 9.78 MB | 1 年前
    3
  • pdf文档 keras tutorial

    exposes Model class to create customized models as well. We can use sub-classing concept to create our own complex model. Functional API: Functional API is basically used to create complex models. Layer softmax activation (using Activation module) function. Keras also provides options to create our own customized layers. Customized layer can be created by sub-classing the Keras.Layer class and it is input_length refers the length of input sequence. Keras 52 Keras allows to create our own customized layer. Once a new layer is created, it can be used in any model without any restriction
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    this toy-example is to illustrate how embeddings work, and we encourage you to try and construct your own example to understand it better. represented on the x-axis, and the feature dangerous can be represented domains that are ready-to-deploy. For instance, you should not spend resources and time training your own ResNet model. Instead, you can directly get the model architecture and weights from TFHub, and fine-tune special type of attention which operates over a single sequence to compute the relationship between its own elements. It replaces the recurrent units in the encoder and the decoder blocks. Although there are
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 43. nn.Module

    ▪ children: direct children 5. to(device) 6. save and load 7. train/test 8. implement own layer 8. own linear layer 下一课时 Data Argumentation Thank You.
    0 码力 | 16 页 | 1.14 MB | 1 年前
    3
  • pdf文档 rwcpu8 Instruction Install miniconda pytorch

    able to run Python scripts that uses PyTorch/TensorFlow by the python command: Installing Your Own Miniconda 1. Download Miniconda installer. 2. Run the installer. The argument -p specifies the installed, you should be able to see the usage of conda using the following command: Installing Your Own PyTorch You can install PyTorch to the default environment (i.e., the base environment) or a new
    0 码力 | 3 页 | 75.54 KB | 1 年前
    3
  • pdf文档 PyTorch Tutorial

    PyTorch Tutorial Willie Chang Pranay Manocha Installing PyTorch • ???????????? On your own computer • Anaconda/Miniconda: conda install pytorch -c pytorch • Others via pip: pip3 install torch • ?? can request a class account. • Miniconda is highly recommended, because: • It lets you manage your own Python installation • It installs locally; no admin privileges required • It’s lightweight and fits
    0 码力 | 38 页 | 4.09 MB | 1 年前
    3
  • pdf文档 Machine Learning Pytorch Tutorial

    Activation nn.ReLU() See here to learn about why we need activation functions. torch.nn – Build your own neural network import torch.nn as nn class MyModel(nn.Module): def __init__(self): super(MyModel self.net(x) Initialize your model & define layers Compute output of your NN torch.nn – Build your own neural network import torch.nn as nn class MyModel(nn.Module): def __init__(self): super(MyModel
    0 码力 | 48 页 | 584.86 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    through the process. Similarly, when ensembling we hope that each individual model would learn its own interpretation of how to solve the problem by using a diverse set of features, which would reduce the strongly recommend our readers to try and experiment with the provided exercises and projects on their own. In the next chapter, we will introduce efficient layers and architectures that you can directly use
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    'model_server': 'https://api.together.xyz', # api_base # 'api_key': os.getenv('TOGETHER_API_KEY'), # Use your own model service compatible with OpenAI API: # 'model': 'Qwen/Qwen1.5-72B-Chat', # 'model_server': 'h will use the `DASHSCOPE_API_KEY' environment variable if 'api_key' is not␣ �→set here. # Use your own model service compatible with OpenAI API: # 'model': 'Qwen/Qwen1.5-72B-Chat', # 'model_server': 'h
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
共 13 条
  • 1
  • 2
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterAdvancedTechniquesTechnicalReviewLectureMeanskerastutorialArchitectures深度学习PyTorch入门实战43nnModulerwcpu8InstructionInstallminicondapytorchTutorialMachinePytorchAI模型千问qwen中文文档
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩