积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(32)Pandas(32)

语言

全部英语(32)

格式

全部PDF文档 PDF(32)
 
本次搜索耗时 0.362 秒,为您找到相关结果约 32 个.
  • 全部
  • 云计算&大数据
  • Pandas
  • 全部
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.13.1

    performing these operations on, for example, a DataFrame of slice objects: – sum, prod, mean, std, var, skew, kurt, corr, and cov 36 Chapter 1. What’s New pandas: powerful Python data analysis toolkit powerful Python data analysis toolkit, Release 0.13.1 • pd.melt() now accepts the optional parameters var_name and value_name to specify custom column names of the returned DataFrame. • pd.set_option() now max Maximum mode Mode abs Absolute Value prod Product of values std Unbiased standard deviation var Unbiased variance skew Unbiased skewness (3rd moment) kurt Unbiased kurtosis (4th moment) quantile
    0 码力 | 1219 页 | 4.81 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.14.0

    read milliseconds in Excel dates and times with xlrd >= 0.9.3. (GH5945) • pd.stats.moments.rolling_var now uses Welford’s method for increased numerical stability (GH6817) • pd.expanding_apply and pd.rolling_apply performing these operations on, for example, a DataFrame of slice objects: – sum, prod, mean, std, var, skew, kurt, corr, and cov 1.4. v0.12.0 (July 24, 2013) 63 pandas: powerful Python data analysis powerful Python data analysis toolkit, Release 0.14.0 • pd.melt() now accepts the optional parameters var_name and value_name to specify custom column names of the returned DataFrame. • pd.set_option() now
    0 码力 | 1349 页 | 7.67 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.7.1

    Minimum max Maximum abs Absolute Value prod Product of values std Unbiased standard deviation var Unbiased variance skew Unbiased skewness (3rd moment) kurt Unbiased kurtosis (4th moment) quantile values rolling_min Minimum rolling_max Maximum rolling_std Unbiased standard deviation rolling_var Unbiased variance rolling_skew Unbiased skewness (3rd moment) rolling_kurt Unbiased kurtosis (4th rolling_median(arg, window[, min_periods, ...]) O(N log(window)) implementation using skip list rolling_var(arg, window[, min_periods, ...]) Unbiased moving variance rolling_std(arg, window[, min_periods,
    0 码力 | 281 页 | 1.45 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.7.2

    Minimum max Maximum abs Absolute Value prod Product of values std Unbiased standard deviation var Unbiased variance skew Unbiased skewness (3rd moment) kurt Unbiased kurtosis (4th moment) quantile values rolling_min Minimum rolling_max Maximum rolling_std Unbiased standard deviation rolling_var Unbiased variance rolling_skew Unbiased skewness (3rd moment) rolling_kurt Unbiased kurtosis (4th rolling_median(arg, window[, min_periods, ...]) O(N log(window)) implementation using skip list rolling_var(arg, window[, min_periods, ...]) Unbiased moving variance rolling_std(arg, window[, min_periods,
    0 码力 | 283 页 | 1.45 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.12

    performing these operations on, for example, a DataFrame of slice objects: – sum, prod, mean, std, var, skew, kurt, corr, and cov • read_html now defaults to None when reading, and falls back on bs4 + replace all occurrences of the string ’.’ with NaN. • pd.melt() now accepts the optional parameters var_name and value_name to specify custom column names of the returned DataFrame. • pd.set_option() now Minimum max Maximum abs Absolute Value prod Product of values std Unbiased standard deviation var Unbiased variance skew Unbiased skewness (3rd moment) kurt Unbiased kurtosis (4th moment) quantile
    0 码力 | 657 页 | 3.58 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.15

    rolling_max(), rolling_min(), rolling_sum(), rolling_mean(), rolling_median(), rolling_std(), rolling_var(), rolling_skew(), rolling_kurt(), rolling_quantile(), rolling_cov(), rolling_corr(), rolling_corr_pairwise() of 1 is backwards-compatible. (GH8279) • Documented the ddof argument to expanding_var(), expanding_std(), rolling_var(), and rolling_std(). These functions’ support of a ddof argument (with a default (GH8080) • Bug in expanding_std() and expanding_var() for a single value producing a confusing error message (GH7900) • Bug in rolling_std() and rolling_var() for a single value producing 0 rather than NaN
    0 码力 | 1579 页 | 9.15 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.15.1

    rolling_max(), rolling_min(), rolling_sum(), rolling_mean(), rolling_median(), rolling_std(), rolling_var(), rolling_skew(), rolling_kurt(), rolling_quantile(), rolling_cov(), rolling_corr(), rolling_corr_pairwise() of 1 is backwards-compatible. (GH8279) • Documented the ddof argument to expanding_var(), expanding_std(), rolling_var(), and rolling_std(). These functions’ support of a ddof argument (with a default (GH8080) • Bug in expanding_std() and expanding_var() for a single value producing a confusing error message (GH7900) • Bug in rolling_std() and rolling_var() for a single value producing 0 rather than NaN
    0 码力 | 1557 页 | 9.10 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.20.3

    median . . . . . . . . . . . . . . . . . . . . . . . . . 1767 34.12.1.5 pandas.core.window.Rolling.var . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1767 xxxix 34.12.1.6 pandas.core.window.Rolling median . . . . . . . . . . . . . . . . . . . . . . . 1771 34.12.2.5 pandas.core.window.Expanding.var . . . . . . . . . . . . . . . . . . . . . . . . . . 1772 34.12.2.6 pandas.core.window.Expanding.std std . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1775 34.12.3.3 pandas.core.window.EWM.var . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1775 34.12.3.4 pandas.core.window.EWM.corr
    0 码力 | 2045 页 | 9.18 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.0.0

    (GH12004) • read_stata() can read Stata 119 dta files. (GH28250) • Implemented pandas.core.window.Window.var() and pandas.core.window.Window. std() functions (GH26597) • Added encoding argument to DataFrame locales -a encodes the lo- cales list as windows-1252 (GH23638, GH24760, GH27368) • Bug in Series.var() failing to raise TypeError when called with timedelta64[ns] dtype (GH28289) • Bug in DatetimeIndex where specifying axis by name references variable before it is as- signed (GH29142) • Bug in Series.var() not computing the right value with a nullable integer dtype series not passing through ddof argument
    0 码力 | 3015 页 | 10.78 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.7.3

    Minimum max Maximum abs Absolute Value prod Product of values std Unbiased standard deviation var Unbiased variance skew Unbiased skewness (3rd moment) kurt Unbiased kurtosis (4th moment) quantile values rolling_min Minimum rolling_max Maximum rolling_std Unbiased standard deviation rolling_var Unbiased variance rolling_skew Unbiased skewness (3rd moment) rolling_kurt Unbiased kurtosis (4th rolling_median(arg, window[, min_periods, ...]) O(N log(window)) implementation using skip list rolling_var(arg, window[, min_periods, ...]) Unbiased moving variance rolling_std(arg, window[, min_periods,
    0 码力 | 297 页 | 1.92 MB | 1 年前
    3
共 32 条
  • 1
  • 2
  • 3
  • 4
前往
页
相关搜索词
pandaspowerfulPythondataanalysistoolkit0.130.140.70.120.150.201.0
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩